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ABSTRACT 

Phosphorous solubilizing bacteria (PSB) are a category of microbes that transform 

insoluble phosphates in soil into soluble forms that crops can utilize for growth and 

development. Phosphorous in natural soils is abundant, but since it is poorly soluble, it is 

not readily available to plants. Introducing phosphorous-solubilizing microbes, such as 

bacteria, is a safer way of improving soluble forms of phosphorous as compared to 

chemical fertilizers. Due to environmental issues and concerns about consumer health, the 

pervasive use of chemical fertilizers to provide nutrients in agriculture, especially the use 

of phosphorous and nitrogenous fertilizers, is currently under investigation. In soil and 

plant rhizospheres, multiple phosphorous solubilizing bacteria have been revealed, each 

with its own different capacity to solubilize phosphates. The solubilization potentials of 

these bacteria, on the other end, varies by genetic and molecular characteristics. The 

objective of this study were to determine the mineralization potential of phosphorus 

solubilizing bacteria, their molecular variations and plant growth promoting characteristics 

in growth and development of the common bean Phaseolus vulgaris.L, which were used 

as an indicator plant. The phosphate solubilization potential of each PSB isolates were 

evaluated under agar and broth medium of National Botanical Research Institute's 

phosphate (NBRIP) that was supplemented with Tricalcium Phosphate (TCP). The 

experimental design was complete randomized design and descriptive statistics was used 

to present the findings of the study. The strains, KV1 and KB5 (B5) were found to be the 

most effective phosphorus solubilizers with 3.69 solubility index and 4.16 solubility 

indices respectively: they converted total of amount soluble phosphate concentration in the 

broth medium (1471 P (ug/Ml) and 1395 P(ug/mL)) respectively. The least performing 

isolate was KBU with 2.34 solubility index. 16S ribosomal RNA gene sequencing and 

NCBI blasting closely identified the isolates KK3 as Enterobacter mori, KB5 as 

Pseudomonas kribbensis, KV1 as Enterobacter asburiae, KB3 as Enterobacter mori, KK1 

as Enterobacter cloacae, KBU as Enterobacter tabaci and KB2 as Enterobacter 

bugandensis.The most efficient phosphate solubilizing isolate were used to test the 

improvement of plant growth parameters of Rosecoco and Mwetemania bean varieties and 

significant differences was determined using ANOVA and means were separated using 

Turkey Honest at 5 % level. PSB strains found in common bean rhizospheres varied in 

solubilization and genetically and that KVI and B5 were the most promising high efficiency 

strains that can be used to unravel the insufficiency of phosphorus and as a biofertilizer for 

sustainable crop production. Isolating and defining compatible PSB, along with comparing 

and analyzing the genetic factors would be a major step in developing an efficient 

biofertilizer for safer, economically sustainable agricultural systems, as well as protecting 

soil from hazardous chemical fertilizers. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Phosphorus (P) is the second most essential macronutrient for plant growth and 

development after nitrogen. It plays a significant role in key metabolic pathways including  

nutrient uptake, biological oxidation  and energy metabolism (Medici et al., 2019). Crops 

need significant nutrients in order to grow and produce substantial yields in any production 

system (Fageria & Baligar, 2008; Kumar et al., 2021). The majority of necessary plant 

nutrients, including phosphorus, are insoluble in soil and therefore must be solubilized into 

soluble forms before they can be available for plants (Goswami et al., 2019). Bacteria are 

examples of microorganisms that can solubilize phosphate, and as a group they are  known 

as Phosphate Solubilizing Microorganisms (PSM) (Alori et al., 2017). Phosphate 

solubilizing bacteria are among the Plant Growth Promoting Rhizobacteria (PGPR). 

Bacterial species in the soil and rhizosphere play an important role in plant growth and 

development, making them ideal phosphorus solubilizers. Despite numerous reports 

highlighting the current usage of phosphate-solubilizing bacteria in other plants, powerful 

novel bacteria colonizing common bean remain unclear especially in tropical sub -Saharan 

Africa. Among the most powerful and effective phosphate solubilizing microbes are 

bacterial strains from the genera Pseudomonas, Bacillus and Rhizobium (Rodrı́guez & 

Fraga, 1999a).  
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In agroecosystems, phosphorus-solubilizing bacteria (PSB) play a critical role in 

biogeochemical phosphorus cycling. Chelation, acidification, exchange reactions and the 

formation of polymeric substances are all used by phosphorus-solubilizing microbes to 

convert insoluble phosphorus to soluble forms. Agricultural land everywhere on the world 

is under tremendous pressure due to the urgent need to feed mankind's constantly 

expanding population. (Alori et al., 2017). Because of increased land usage and the use of 

harmful inorganic fertilizers, the quality of ecosystems that produce food has declined as 

time has passed (Manzoor et al., 2017). Inorganics fertilizers  containing macronutrients 

(Nitrogen, Phosphorus, and Potassium (NPK)) have been extensively used in agronomic 

practice around the world to provide  nutrients that promote plant growth and, as an 

outcome, increase crop productivity (Sharma et al., 2014). Modern farming systems have 

clearly benefited much from these fertilizers, but their continued abuse has damaged 

agricultural soils and altered the vital plant growth-promoting rhizobacteria (PGPR), which 

has led to poorer production.(Bisht & Chauhan, 2020). Due to environmental and health 

concerns brought up by the pervasive usage of chemical fertilizers to deliver nutrients in 

agriculture (Tahir et al., 2018),the ultimate objective of current research is to help create 

alternative technologies that will enable the widespread implementation of organic 

fertilizers in agronomic operations while reducing dependency on synthetic phosphate 

fertilizers (Goswami et al., 2019).Inoculating plants with rhizobacteria and mycorrhizae to 

boost plant growth and development is a popular modern application of microorganisms 

for crop production (Averill et al., 2019). Phosphorus solubilizing bacteria (PSB) are 

among well-known rhizobacteria that enrich plant growth characteristics (Kalayu, 2019). 
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The aforementioned microbes have been found to have a great capacity for solubilizing 

phosphorus (Satyaprakash et al., 2017). Numerous phosphorous-solubilizing microbes 

have been found in soil and crop rhizospheres, each having a unique capacity to solubilize 

phosphates (Toro, 2007). On the other hand, these bacteria's solubilization capacity differs 

genetically and environmentally (Alaylar et al., 2020). An emerging and sustainable field 

is the evaluation of potential phosphorus-solubilizing bacteria for specific zones that can 

be used as bio inoculants or biofertilizers to improve plant growth efficiency and yields. 

This is for the reason these bacterial inoculants might credibly moderate the excessive use 

of chemical fertilizers while  preserving soil microflora (Alori et al., 2017; Pande et al., 

2017). 

 

Globally, phosphorus-solubilizing bacteria have been genetically characterized using the 

hypervariable sections of the 16S ribosomal RNA gene, a gene that is conserved across all 

prokaryotes (Alaylar et al., 2020; Ayyaz et al., 2016; Javadi Nobandegani et al., 2015) but  

limited has been reported  in Kenya for microorganisms that promote plant growth, 

especially in Western Kenya, the Rift Valley  and Central Kenya, where crops are grown. 

This study aimed to identify phosphorus-solubilizing bacteria, characterize them 

genetically, and assess how well they affected common bean growth and development. The 

study also aimed to quantify the amounts of phosphate solubilization in the broth and agar 

media. In spite of comparing and analyzing their phylogenetic relationships and 

mineralization potential, identifying potential PSB isolates linked to common beans in 

Western Kenya would be a significant step toward creating an effective inoculant and 

biofertilizers for safer, more prosperous agricultural systems that safeguard the soil from 
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harmful chemical fertilizers. (Chouhan et al., 2021). 

 

1.2 Statement of the Problem 

The urgent need to feed the world's ever-growing population is pushing and immensely   

straining  arable lands around the world  to produce more yields (Fróna et al., 2019). In 

recent years, there has been high usage chemical nutrient fertilizers, mainly for crop yield 

improvement and faster economic purposes (Krasilnikov et al., 2022). Phosphate fertilizers 

have been commonly used in agricultural practice around the ecosphere to provide macro 

nutrients that promote plant growth and, as a result, increase crop productivity (Sharma et 

al., 2014). Examples of these fertilizers used include Di-Ammonium Phosphate (DAP) and 

Triple Super Phosphate (TSP) fertilizers. These inorganic fertilizers have undoubtedly 

provided benefits to modern cropping systems, but their overuse has massively damaged 

and influenced  the health of agricultural soils, resulting in long term lower production of 

yields (Krasilnikov et al., 2022). 

 

In order to lessen dependency on chemical phosphate fertilizers and allow the widespread 

use of biofertilizers in agronomic operations, scientists are concentrating on creating 

suitable alternative technologies (Bhardwaj et al., 2014). In every agricultural system, 

crops require a lot of nutrients to grow and yield a quantity of enough food (Fageria et al., 

2008). One of the key nutrient required by plants is phosphorus (P) (White & Brown, 

2010).To acquire adequate phosphorus  for crop production, P fertilizer is applied to most 

agricultural lands in forms of inorganics, despite its effectiveness of P uptake by plants, it 

appears very low at approximately 15% owing to P fixation or loss from agricultural  soils. 
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Phosphate anions easily forms complexes with metal cations like aluminum ions in soils  

which consequently result in an exceptionally very low content of available soil P for the 

demands of plants (Shen et al., 2011). Furthermore, unexploited P from fertilizer would be 

leached  into groundwater in various forms including infiltration, while P left in the soil 

enters the water bodies  through surface runoff, prompting to P fertilizer pollution to rivers 

and lakes (Gao et al., 2012). The P fertilizer pollution blowouts into farmland to an 

extensive kind of natural ecosystems leading to destruction of native microbes and loss of 

soil fertility (Bashir et al., 2020). Up to date, multiple strategies have been elevated to 

overcome or reduce the over dependence on chemical fertilizers and among them is 

employment of plant growth promoting microbes (García-Fraile et al., 2015; Tian et al., 

2021). This study is part of the alternative product development using biotechnology 

aiming at isolating efficient PSB found in the common bean rhizosphere, characterizing 

their molecular variations and determining their potential in phenotypic effects in plant 

growth characteristics.  

 

1.3 Justification and Significance of the Study 

Continuous use of hazardous chemical fertilizers will degrade the soil fertility, destroy 

aquatic life and impose health hazard to humans (Pahalvi et al., 2021). Biofertilizers are 

sustainable and safer agricultural practice system and use of Phosphorous solubilizing 

microorganism is greatly beneficial (Silva et al., 2023). The study thus gives insight on 

sustainable and safer agricultural system by use of Phosphorous solubilizing bacterial as 

an alternative method from inorganic fertilizers to biofertilizers. The use of phylogenetic 

and genomic studies to characterize these PSB provides a breakthrough for researchers in 
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terms of evolutionary relationships and the selection of novel bacteria for use as 

biofertilizers, thereby enhancing food security, maintaining consumer health, and 

preserving the environment (Odelade & Babalola, 2019). As more knowledge about PSB 

and the mechanisms that they employ come to be available, there is every reason to believe 

that their use as biofertilizers will become more efficient and essential mechanisms in the 

production of long-term soil management and soil amelioration systems aiming at boosting 

the soil fertility. Consumers of agricultural products are primarily concerned with the 

products' health, consistency, and nutritional value (Demi & Sicchia, 2021).Therefore, 

using PSB as possible biofertilizers is an environmentally friendly way to boost food 

production while also protecting the environment.. Uncovering the growth-promoting 

properties of these bacteria and providing evidence for the application of useful bio 

inoculants to leguminous crops for sustainable production in tropical regions require 

research on the effects of genetically diverse phosphorus solubilizing bacteria on the 

growth characteristics of plant varieties. 

 

One of the fundamental strategies of maintaining soil health and improving crop production 

is by managing plant nutrition through use of appropriate methods. Proper nutrition can 

greatly influence the finer line between crop production and food insecurity. Hence, a 

healthy soil is a necessity for profitable, productive, and environmentally fit agricultural 

systems. Investing time in learning about soil processes and methods to boost soil quality 

through effective techniques can lead to a justifiable soil management system that enhances 

plant growth and environmental quality over a period. The management of soil 

microorganisms, a priceless and vital natural resource, can boost the availability of 
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nutrients. The rhizosphere of the soil is also seen as a complex ecosystem where live 

microbes and plant roots combine organic materials and mineral particles into a dynamic 

structure that regulates the quality of the air, water, and nutrients. According to Maeder et 

al., (2002) organic systems emit 34 to 51% fewer greenhouse gases per hectare than 

conventionally managed systems as a result of nutrient inputs. As a result, nitrogen was 

decreased in a form that is susceptible to leaching losses and can increase greenhouse gas 

emissions. Additionally, two to three times as many beneficial soil microbes encouraging 

basic soil structure and fertility were present in organic soils, considerably boosting soil 

profile (Maeder et al., 2002).  

 1.4 Objectives 

 1.4.1 General Objective 

To determine molecular characteristics and mineralization potential of Phosphorous 

Solubilizing Bacteria colonizing common bean (Phaseolus vulgaris. L) Rhizosphere in 

Western Kenya.  

1.4.2 Specific Objectives 

1. To determine the mineralization potentials of phosphorus solubilizing bacteria 

colonizing common bean rhizosphere in Western Kenya. 

2. To determine molecular variations and phylogeny of phosphorous solubilizing 

bacteria colonizing common bean rhizosphere in Western Kenya.   

3. To determine the effects of selected high potential phosphorous solubilizing 

bacteria in promoting growth characteristics of common bean varieties. 

 

 



 

 

8 

 

1.5 Research Questions 

1. What are the mineralization potentials of phosphorus solubilizing bacteria 

colonizing common bean rhizosphere in Western Kenya? 

2. What are the molecular variations and phylogenetic relationships of phosphorous 

solubilizing bacteria colonizing common bean rhizosphere in Western Kenya? 

3. What are the effects of selected high potential phosphorous solubilizing bacteria in 

promoting growth characteristics of common bean varieties? 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Molecular Characterization of Bacteria using 16S rRNA Gene 

Although not as accurate as genotypic identification, phenotypic characterization has 

enormously been used in bacterial identification (Franco-Duarte et al., 2019). Regardless 

of other advanced genotypic  and  molecular methods of identifying and characterizing 

bacteria, the comparison of  the 16S rRNA gene sequence for bacteria has recently emerged 

as  the most sought after genetic method (Clarridge, 2004). Moreover, this form of gene 

sequencing has opened avenues making the isolation and identification of poorly described 

strains possible. The identification of strains such as Rhizobia, Bacilli and Pseudomonas 

has been made possible by use of this gene, making it possible to recognize pathogen that 

can be novel (Srinivasan et al., 2015).   

A total of 1550 base pairs make up the 16S rRNA gene sequence, which is divided into 

variable (V) and conserved portions (Figure 1). The 16S rRNA gene is big enough and has 

enough interspecific polymorphisms to allow for differentiated and statistically reliable 

molecular characterization. The gene is known to feature hyper variable and conserved 

sections that are useful for identifying and characterizing broad-length bacteria. In Figure 

1, it displays a schematic structure of 16S rRNA gene and the ribosome complex of 

Escherichia coli. The conserved regions and hyper variable regions are shown with white 

and grey boxes respectively. In the figure, the bold arrows display the  approximation of 

universal primers’ positions on the 16S rRNA gene sequence (Fukuda et al., 2016).  
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Figure 1. Structure of 16S rRNA gene with variable regions. Source: Fukuda et al.,( 2016) 

2.2 Phosphorus as a Plant Macronutrient 

Phosphorus is recognized as the principal key element among all the elements needed for 

plant growth. It is the second most abundant element after nitrogen and mostly required by 

plants in early developmental stages. In soil, the diverse forms of phosphorus can further 

be broken down to soluble orthophosphates, insoluble organic and inorganic phosphates 

(Prabhu et al., 2018). Moreover, the relative rate of decomposition of organic matter 

dictates the respective concentrations of P for plant uptake, and the ability of the inorganic 

constituents in soil to form respective soluble fractions. Plants takes up phosphorous by 

solubilization and mineralization (Manzoor et al., 2017). Soluble phosphates fertilizer is 

capable of increasing the number of orthophosphates in soil, when P-based fertilizers are 

added. This phenomenon can further enable the reaction of P with iron , aluminum and 

other elements like silicate clay hence becoming unavailable for plant use (Cole et al., 

2016). Functions of phosphorus in all the plants include; energy transformations and 
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storage, improves cell structure components, plays major role in respiration and 

photosynthesis, cell division, elongation and root development (Kumar et al., 2021) 

(Figure 2). On the other hand, phosphorus deficiency leads to the following; reduced leaf 

expansion and number, reduced quality of fruits, seeds and forages, reduced shoot growth, 

improper nutrient uptake, delayed plant maturity and decrease disease and pathogen 

resistance (Meng et al., 2021) (Figure 2). 

 

 

 

 

 

 

 

 

2.3 Biofertilizers in Agriculture 

Biofertilizers are widely defined as organic fertilizers majorly bio-based, which could be 

from plants or animal source, or from dormant or living microbial masses. This has 

enormous capability of improving the bio-accessibility and biodiversity of nutrients in soil 

for plant use. Furthermore, it comprises of plant growth microbes, phosphorus solubilizing 

bacteria, nitrogen fixing bacteria, potassium solubilizes, among other beneficial fungi and 

bacteria (Figure 3.)  

 

 

Figure 2. Functions of phosphorus and effects of P deficiency in plants. Source: Meng 

et al., (2021). 
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Elsewhere, biofertilizers have been defined as a biological substance comprising of live 

microorganisms which are thought to have beneficial alteration of growth characteristics 

to plants (Mącik et al., 2020). Because of their capability in boosting enhancing food safety 

and boosting crop productivity, using microorganisms as biofertilizers is seen as a suitable 

alternative to chemical fertilizers in agriculture. In the agricultural sector, such 

microorganisms as plant growth promoting bacteria, fungus, rhizobacteria, cyanobacteria, 

and others have been discovered to have bio fertilizer-like capabilities. Bio fertilizers have 

been shown to be capable of giving vital nutrients to crops in appropriate proportions, 

resulting in increased agricultural yields, according to extensive research (Mahanty et al., 

2017). To improve soil fertility, nutrient uptake, and crop yields, microbial strains use a 

variety of biological mechanisms, including nitrogen fixation, potassium and phosphorus 

solubilization, phytohormone excretion, the production of substances that disarm 

phytopathogens, protection of plants from abiotic and biotic stresses, and the detoxification 

 

Figure 3. Types of Biofertilizers. Source :García-Fraile et al., (2015). 
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of subsurface pollutants. Given the risks associated with the excessive use of chemical 

fertilizers and pesticides as well as the rising demand for food on Earth, biofertilizers are 

currently regarded as the most promising method and non-toxic alternative to synthetic 

agro-chemicals (Mącik et al., 2020). One of the key areas of scientific study for the 

advancement of sustainable agriculture is the widespread use of biofertilizers since it is 

thought that the use of microbial inoculants will eliminate the problems associated with 

chemical-based farming methods (Alori & Babalola, 2018). 

 

Over the last few decades, there has been a rapid increase in global population, which poses 

a challenge to human food security (Maisonet-Guzman, 2011). As a result, in order to meet 

the enormous demand for food, agricultural production must be raised quickly and on the 

limited amount of available agricultural land in the world (Abebe et al., 2022). Food 

security has   made the agriculturalists globally to depend immensely on commercially 

accessible chemical-based fertilizers to improve agricultural production (Sasson, 2012). 

However, scientist have realized a tremendous improvement in agricultural production 

utilizing chemical fertilizers, which have proven to be harmful to our ecology, particularly 

in terms of human and animal health. The damaging effects of heavy chemical use in 

agricultural systems have made it difficult to sustainably produce crops and maintain the 

quality of the environment. Therefore, using biological fertilizers is a natural, affordable, 

and environmentally responsible option to try to solve this issue (Kumar et al., 2022). 

Biofertilizers include living microorganisms like PSB and other PGPM with ability of 

furnishing sufficient nutrients to the plants, while improving  high yield and sustaining the 

environment  (Chaudhary et al., 2022). Numerous studies are attempting to describe the 
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need for biofertilizers, their preference over traditional synthetic ones, the various varieties, 

their uses in agriculture, how they are produced, how they work, and most significantly, 

the benefits and drawbacks of using them (Mitter et al., 2021). 

2.4 Phosphorus Solubilizing Bacteria (PBS) 

Phosphate-solubilizing microbes (PSMs) are useful microorganisms capable of 

hydrolyzing or solubilizing both organic and inorganic insoluble P compounds, into soluble 

forms for easy plant uptake (Tian et al., 2021). These microbes are capable of availing 

natural phosphatases and important organic acids, which are thought to reduce the pH of 

soil while boosting the chelating mechanisms (Goswami et al., 2019). The vast majority of 

these microorganisms are bacteria living in soil. It has been noted that the soil bacteria 

Agrobacterium spp., Pseudomonas spp. and Bacillus circulans can solubilize  weakly 

accessible phosphorus (Babalola & Glick, 2012). 

 

Various strains of bacteria that mineralize phosphorus include Azotobacter (A. Kumar et 

al., 2016), Bacillus sp, (Panneerselvam et al., 2019) Burkholderia sp,.(Alori et al., 2017), 

Enterobacter sp,., Erwinia sp,. (Ahmed et al., 2019), Kushneria sp,.(Zhu et al., 2011), 

Paenibacillus (Fernández Bidondo et al., 2011), Ralstonia, Rhizobium  sp,.(Tajini et al., 

2011), Rhodococcus, Serratia, Bradyrhizobium, Salmonella, Sinomonas  and Thiobacillus  

(Gong et al., 2022; Tian et al., 2021). The isolates of the PSB Bacillus megaterium, 

Bacillus spp., and Arthrobacter spp. have all been isolated from Kenyan soils. They are the 

microorganisms that are most prevalent and have a wide range of strains in soils. 

Nevertheless, only five percent of all isolates are effective in terms of their capacity to 

phosphate-solubilize (Ndung’u-Magiroi et al., 2012). The complexes of iron (Fe) and 
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aluminum (Al) oxides and hydroxides in most Kenyan soils causes P deficiency, which 

dispossesses plants  arising up to 80% of the added P (Ndung’u-Magiroi et al., 2012). 

2.5 The Significance of Phosphorus-Solubilizing Bacteria in Agriculture 

PSBs capable of converting insoluble P to soluble forms can be used as biofertilizers to 

better utilize the phosphorus contained in soils. This boosts the amount of soluble 

phosphorus in the environment (Tahir et al., 2018). Since it is preferable to use an 

environmentally sustainable approach (i.e., a model that stresses the use of biological soil 

amendments rather than chemicals) to solve the problems of infertile soil, the use of P 

biofertilizers is a promising strategy for speeding up food production by increasing yield 

(Babalola & Glick, 2012). PSM function as bio fertilizers by making P available to growing 

plants that would otherwise be inaccessible. Phosphorus-solubilizing bacteria may 

encourage plant growth by enhancing biological nitrogen fixation efficiency, producing 

phytohormones, and boosting the bioavailability of essential minerals including zinc and 

iron (Wani et al., 2007). 

 

In pot experiments and in the field, many studies on PSB inoculation have reported an 

increased plant yield and P uptake which is a proof  that PSB has future potential 

sustainable  agriculture  (Gupta et al., 2021; Boubekri et al., 2021;; Yu et al., 2022; Wang 

et al., 2022a; Pande et al., 2017). In previous experiments, the PSB establishment rate was 

5.6 06 spores g soil in a pot experiment using fungi as a biofertilizers (wheat husks bearing 

20% perlite- carrier material) (Wang et al., 2015). Benefits of using microbial rhizosphere 

management for sustainable agriculture practices include increased phosphate 

bioavailability to crops, boosted root and shoot biomass, enhanced root length and shoot 
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length, boosted fresh and dry shoot weights, P-labeled phosphate uptake, and significant 

grain and dry matter yield enhancements (Fasusi et al., 2021).  

 

Phosphate-solubilizing bacteria  have also shown significant synergistic outcome on the 

joint growth and development of crops (Minaxi et al., 2013). Apart from solubilizing P, 

more of PSB has the  potential as biocontrol agents against a diversity of plant pathogens 

(Mitra et al., 2020; Pandit et al., 2022). Phosphorus solubilizing microorganism  control 

pathogens by developing such antifungal compounds (phenolic, and flavonoids), 

antibiotics , siderophores, lytic enzymes and hydrogen cyanide, which all serve to inhibit 

pathogen proliferation (Vandana et al., 2021). 

 

PSMs technology increases the productiveness and agricultural usage of soils which are 

saline to alkaline without the environmental or health threats that come from using artificial 

fertilizers endlessly. Kushneria sp. YCWA18, is a bacterium that can solubilize either 

inorganic and organic phosphorus which  has shown modest saline-alkaline based 

agriculture (Beck. et al., 2014). At various NaCl concentrations, Tricalcium phosphate 

could be dissolved by the strains of Pseudomonas aeruginosa PSBI3-1, Aerococcus sp. 

PSBCRG1-1, Aspergillus sp. PSFNRH-2 and A. terreus PSFCRG2-1 (Srinivasan et al., 

2012) . In the existence of NaCl concentrations  of approximately 5%, the PSM 

Burkholderia cepacia  positively affected  the development of maize crop (Pande et al., 

2020). These bacterial organisms have all shown potential use as biofertilizers in saline 

agriculture utilizing alkaline soils with other beneficial characteristics.  In  a series of tests 
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on bacterial solubilization, the proportion of phosphorus released increased but then 

decreased as the NaCl concentration was increased up to 0.8 M (Srinivasan et al., 2012). 

Table 1 . Effects of some phosphorous solubilizing bacteria on plants 

Bacteria strain  Test crop Result  Reference 

Pseudomonas 

aeruginosa  

Chinese 

cabbage 

Increase biomass and 

plant length  

(Wang et al., 

2017) 

Bacillus sp. and 

Pseudomonas sp.  

Sesame 

(Sesamum 

indicum) 

Increased  

seed production  

(Jahan et al., 2013) 

Bacillus 

thuringiensis  

Rice (Oryza 

sativa) 

Improved shoot length  (Rao et al., 2015) 

Pseudomonas 

striata and 

Glomus 

fasciculatum 

Soybean 

wheat  

Improve rooting and 

promotes grain yield 

(Mahanta & Rai, 

2008) 

Rhizobium tropici  

Rhizobium 

phaseoli  

 Common beans 

Increase the number of 

nodules, shoot and root 

biomass 

(Bechtaoui et al., 

2019; Wekesa et 

al., 2021) 

Burkholderia 

cepacia , 

Maize Improved plant growth (Li et al., 2017) 
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Paenibacillus sp, 

Pseudomonas sp 

Paenibacillus 

beijingensis 

Wheat 

Improved soil available 

P and plant P uptake 

(Li et al., 2020) 

Enterobacter 

cloacae,  

Bacillus 

thuringiensis,  

Pseudomonas 

pseudoalcaligenes 

Potato  

Enhance yield and 

nutrient uptake 

(Pantigoso et al., 

2022) 

 

2.6 Mechanisms of Phosphorus Solubilizing Bacteria 

There have been theories that justify the mechanism of solubilization of inorganic 

phosphate. Mobilization and immobilization by mineralization are the main bacterial 

mechanisms in solubilization. To mineralize organic P molecules, microbes, particularly 

bacteria, produce phosphatase enzymes. The terms "phosphatase activity" relate to the 

combined but separate functions of the enzymes phosphomonoesterase (PME) and 

phosphodiesterase (PDE). PDE is known to hydrolyze organic P complexes such as nucleic 

acids and phospholipids into Phosphomonoesterase (inositol phosphates and 

mononucleotides). According to  Khan et al., (2013) and Park et al., (2022),PSB like, 

Pseudomonas, Enterobacter and Pantoea can enzymatically mineralized soil phosphorous 

into soluble forms. 
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Figure 4. Soil Phosphorous by immobilization and mobilization by bacteria. Source: 

Mitran et al., (2018). 

 

Other study outcomes have revealed that the most common mechanism is the 

amalgamation of compounds capable of dissolving mineral encompassing siderophores, 

organic acids, hydroxyl ions, protons, and carbon iv oxide (Mitran et al., 2018; Pecoraro 

et al., 2021). When synthesized alongside their hydroxyl and carboxyl ions, organic acids 

are known to chelate cations or reduce the pH, thereby releasing phosphorous (Wei et al., 

2018). While the direct oxidation pathway is responsible for the release of organic acids 

which find their way into the periplasmic space (Zhao et al., 2014), their excretion is 

followed by a decline in ph. This phenomenon leads to acidification of the involved 

microbial cells and the surroundings, thereby releasing P ions substitution of H+ for Ca2
+  

(Timofeeva et al., 2022).As a result,(Illmer et al., 1995) suggested the hydrogen ion  

acidification theory. According to the theory, H+ released is linked to cation assimilation. 

Phosphorus is solubilized as a product of NH+
4 assimilation and H+ excretion. 
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The discharge of H+ to the outer surface in exchange for the absorption of cations or with 

the aid of H+ translocation. The solubilization of mineral phosphates can be accomplished 

using ATPase as an alternative to the production of organic acids. (Rodrı́guez & Fraga, 

1999b). Additionally, it was shown that the assimilation of ammonium ions in microbial 

cells is followed by the release of protons, which results in the solubilization of phosphorus 

without the production of organic acids (Sharma et al., 2013). Furthermore, of all organic 

acids, gluconic acid is the most effective solubilizer of mineral phosphate; it chelates the 

cations attached to soil phosphate to make the phosphate available for plant uptake 

(Suleman et al., 2018).Gram-negative bacteria are known to solubilize mineral phosphate 

by converting glucose to gluconic acid via direct oxidation mechanism (Sashidhar & 

Podile, 2010).  

 

In glucose dehydrogenases (GDH), pyrroloquinoline Quinone (PQQ) serves as a redox 

cofactor, resulting in phosphate solubilization (An & Moe, 2016).Two more ways that 

microbes solubilize mineral phosphate include the synthesis of chelating chemicals and the 

formation of inorganic acids including sulphatic, carbonic, and nitric acid. On the other 

hand, it has been suggested that organic acids are more effective than inorganic acids at 

releasing soluble phosphorus from soil. In reality, the formation of organic acids during P 

solubilization by PSM is not the only factor contributing to an elevated P surge in culture 

media. Another method of microbial phosphate solubilization is the release of enzymes. 

Lecithin-acting enzymes, for instance, cause this state to increase in a culture medium 

containing lecithin and produce choline (Aberathna et al., 2022).  
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2.7 Factors Influencing Bacterial Phosphate Solubilization 

PSB's capacity to transform insoluble phosphorus into soluble forms is attributed to the 

soil's nutritional richness, the bacteria's physiological ability and the bacteria's growth 

status. PSB has a stronger tendency to solubilize phosphate in soils from harsh 

environmental conditions than PSB present in soils from more favorable environments, 

such as alkaline-rich soils, soils with a high degree of nutrient deficit, or soils from high or 

low temperature settings (Johan et al., 2021). Studies  on the impact of temperature on 

bacteria in phosphorus solubilization has been unreliable  since most reported temperature 

information differs (Saadouli et al., 2021). Oehl et al. (2001) observed that the optimal 

temperature for phosphorus solubilization at maximum is 20–25°C, whereas Kang et al. 

(2002) and Varsha et al. (2002) documented 28°C. Others, including Rosado et al. (1998); 

Kim et al. (1997a), and Fasim et al. (2002), and Johri et al. (1999), have found that the best 

temperature for Phosphorous solubilization is 30°C. P solubilization in desert soil was 

observed by Nautiyal et al. (2000) and Nahas (1996) at an extreme temperature of 45°C, 

while Johri et al. (1999) observed solubilization at a low temperature of 10°C. Microbial 

interactions in soil coupled by vegetation cover and ecological conditions, land use, plant 

types and organic matter, soi pH are all factors influencing the solubilization of P (Heidari 

et al., 2020; Musarrat & Khan, 2014). Hot humid climates solubilize phosphorus more 

quickly, while cool dry climates do so more slowly.  

 

In comparison to a saturated wet soil, a well-aerated soil would allow for faster phosphorus 

solubilization (Bargaz et al., 2021). Zhang et al. (2014) recently noted that adding small 

quantities of inorganic P to the plant rhizosphere can endorse phytic acid bacterial 
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mineralization, improving plant phosphorus nutrition. Phosphate solubilizers were often 

supported by lime and compost, which were used as soil improvers. According to Yu et 

al., (2021) crop rotation increased population richness and diversity of Phosphorus 

Solubilizing Bacteria. In terms of pH, phosphorous solubilization bacteria tolerates both 

acidic and alkaline  soils   as well as optimal  soil pH  (Sanchez-Gonzalez et al., 2023). 

2.8 Undesirable Effects of Inorganic Phosphates 

To alleviate food hunger in Sub-Saharan Africa, chemical fertilizers are routinely 

employed in excessive and disproportionate amounts to increase agricultural yields. 

However, chemical fertilizers above a certain threshold level harm the soil and entire 

ecosystems in addition to being absorbed in agricultural plants (Aktar et al., 2009; Khalid 

et al., 2018). Despite inorganic phosphate (P) playing crucial roles in several biological 

processes and signaling pathways in plants, continuous application on lands causes 

deleterious influences on environments majorly water bodies and soil. When  excess  is 

applied  at  inappropriate  time, such as right before it rains, most of it is carried  away and 

finds itself in local streams (Guignard et al., 2017). This type of pollution is considered a 

nonpoint source of pollution. It extremely causes eutrophication (a decline of dissolved 

oxygen in water bodies instigated by an upsurge of minerals and organic nutrients) of rivers 

and lakes. This reduced level of oxygen in water ends up suffocating aquatic animals. 

 

Another negative effect of chemical fertilizers is compaction of the soil. The overuse of 

fertilizers over extended periods of time and heavy cropping is one of the main causes of 

compaction. Problems brought on by excessive soil strength, root development restriction, 

poor aeration, poor drainage, runoff, erosion, and soil deterioration are all brought on by 
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soil compaction (Shaheb et al., 2021). Disturbance and destruction of soil microorganisms 

is another major negative influence of chemical fertilizers. Studies have revealed that 

countless fertilization treatments across the world have a significant effect on the structure 

of soil microbial biomass and the community (Bai et al., 2020). In Kenya, and most 

specifically Western Kenya, excessive use of inorganic chemical fertilizer in the 

agricultural areas has devastated the microbiota in the rivers and caused heavy siltation of 

Lake Victoria leading to eutrophication. This has encouraged the growth of large volumes 

of algae and other biomass such as papyrus, water hyacinth that consumes all the oxygen 

in the water, causing an ecosystem degeneration. Due to poor agricultural practices and 

overuse of inorganic fertilizer, soil pH is in most farms below 5.5. At this acidic pH most 

soils in Western Kenya have been found to be predominantly deficient in nitrogen, 

phosphorus, and potassium. Phosphorus, one of the key elements for plant growth, 

precipitates and is rendered unavailable under an acidic pH. In accordance with this, 

hydrogen and aluminum ions end up being poisonous and may harm the plants. Even with 

substantial external agricultural input in the form of inorganic fertilizer being employed, 

soil acidity can limit crop yield and result in poor crop harvest and quality if ignored. Poor 

soils have unfavorable effects on plant nutrient bioavailability, which makes plants more 

susceptible to disease and reduces their ability to produce. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study Area 

The regions of isolation that represented Western Kenya were chosen by means of 

purposive random systematic sampling from the corresponding counties and sub-counties. 

The sampling locations (marked on the map in Figure 5) were Chaptais (N 0° 48.36'; E 34° 

28.26') in Bungoma County, Teso South (N 0° 33.729'; E 34° 16.21'), Emuhaya (N 0° 5.42'; 

E 34° 34.65'), and Lurambi (N 0° 0.29'; E 34° 69.71') in Kakamega County. The main 

source of income of Western Kenya inhabitants is mixed agricultural farming (Ndeda, 

2019). Sugarcane, maize, beans, finger millets, bananas, and sweet potatoes are among the 

main food and cash  crops grown in the region (Rao et al., 2015).Western Kenya is typically 

hot and humid, with year-round rainfall. According to World Bank Climate Change 

Knowledge, (2019 ) indicates that it received average temperatures of 21.28ºC and average 

rainfall of 2233.59 mm in the year 2021.All isolates were coded as per the  initial of the 

author  followed by  the  initial  of respective county where it was isolated  and  lastly the 

digit  number. 
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3.2 Experimental Design  

The study involved an experimental design of screenhouse and laboratory experiments at 

Science Park Incubation and Innovation Center (SPIIC) and Biotechnology Laboratory at 

Masinde Muliro University of Science and Technology (MMUST). The study consisted a 

factorial treatment (6×4×6×2) =288 (Table 2). Two isolates KB5 and KV1 were selected 

as inoculants considering their high potentiality to solubilize phosphates in vitro. 

Figure 5. Map of Western Kenya and isolation sites of Phosphorus solubilizing isolates. 

Source: Author. 
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Treatment 1 with KB5 inoculant on a Rosecoco variety, Treatment 2 with KV1 on a 

Rosecoco variety, Treatment 3 un- inoculated negative control on a Rosecoco, Treatment 

4 with KB5 inoculant on a Mwetemania variety, Treatment 5 with KV1 on a Mwetemania 

variety, Treatment 6 with un- inoculated negative control on a Mwetemania variety. A 

treatment had n= 6 plants replicated four times to a total of 24 plants per treatment and the 

experiment was repeated once giving a total of 288 plants (N=288). The Leonard Jars were 

laid in a randomized blocked design. 

Table 2. Screenhouse experimental design. 

Treatment  Isolate (Inoculant) Bean variety  

1 KB5 Rosecoco 

2 KV1 Rosecoco 

3 Un-inoculated Control  Rosecoco  

4 KB5 Mwetemania  

5 KV1 Mwetemania 

6 Un-inoculated Control  Mwetemania 

Treatment of common bean varieties with Isolate KB5, KV1 and Negative Control (n= 6, 

N=288). 

 

3.3 Bacterial Isolation 

Root nodules and rhizosphere soil surrounding uprooted common bean were used to isolate 

bacteria using the method described by Tomer et al. (2017). Briefly, flowered bean plants 

were uprooted with a portion of the soil and the root nodules were collected into sterilized 

khaki paper bags and taken to the laboratory for morphological identification of 
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phosphorus solubilizing bacteria within 24 hours. Sampling of experimental plants was 

done by  modifying a protocol by Kawaka et al.(2014). Homogenate of root nodules and 

rhizosphere soil (10% soil in 0.85% saline water) were made using a mortar and pestle 

followed by serial dilutions which were prepared within 24 hours at room temperature 

according to Pande et al. (2020).A droplet of liquid in diluents in the test tubes were place 

on the midpoint of sterile NBRIB agar plate and uniformly spread across the surface with 

the help of a sterilized glass-rod and incubated for five days at 28ºC. Sub culturing was 

done to obtain the pure isolates (Mohamed et al., 2019). 

 

3.4 Bacterial Identification 

Isolates were grown on both solid and liquid nutrient medium of the National Botanical 

Research Institute's Phosphate Growth Medium (NBRIP) supplemented with Tricalcium 

phosphate (Nautiyal, 1999). NBRIP contains 10 grams of glucose substrate, 5 grams of 

Ca3(PO4)2, 5 grams of MgCl2.6H2O, 0.25 grams of MgSO4.7H2O, 0.2 grams of KCl, 0.1 

grams of (NH4)2SO4, 15 grams of agar in 1000 milliliters of distilled water. The pH of the 

media was adjusted to 7.0 before autoclaving. Bacterial strains were introduced into the 

media by the standard pour plate technique using a sterile dropper (10 µL of aliquots per 

plate) (Burns, 2005). They were incubated for 7 days at 28°C. At the end of the incubation, 

PSB were able to grow and were identified through the formation of a halo zone around 

the colony (Khan et al., 2013). Colonies that did not form the halo zone were exempted. 

The colony diameter (C.D) and halo zone diameter (H.D) of each isolate was measured 

and the Solubilizing Index (SI) was calculated.  
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3.5 Determination of Solubilization Indexes (SI)  

The National Botanical Research Institute's phosphate growth medium (NBRIP) agar 

medium was sterilely poured into sterile Petri plates that contained insoluble Ca3 (PO4)2 at 

a concentration of 5 g/L-1 in order to calculate the phosphorous solubilization index (SI). 

The isolated bacteria were inoculated to the plates after the media had solidified. The plates 

were then incubated at 28 °C for two weeks before being visually inspected. Employing 

the subsequent formula by Dipak (2016), the solubilization indices were calculated by 

measuring the colony diameter and the halo (clear zone) diameter (Figure 6). Three replicas 

of each experiment were performed.  

     Solubilizing Index (SI) = 
 𝐈𝐬𝐨𝐥𝐚𝐭𝐞′𝐬 𝐂𝐨𝐥𝐨𝐧𝐲 𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫(𝐂.𝐃)+𝐈𝐬𝐨𝐥𝐚𝐭𝐞′𝐬 𝐇𝐚𝐥𝐨 𝐙𝐨𝐧𝐞(𝐇.𝐃

𝐈𝐬𝐨𝐥𝐚𝐭𝐞′𝐬 𝐂𝐨𝐥𝐨𝐧𝐲 𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫 (𝐂.𝐃)
 

 

Figure 6. Determining the solubilizing index’s C is Colony diameter while Z is Halo zone 

diameter. Source: Ouattara et al.(2019). 
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3.6 Determination of percentage Phosphate Solubilization of Isolates 

Step 1; Determining the LDI (Logarithmic Divergence Index) 

Logarithmic Divergence Index  

(LDI) = Ln (S.I) – Ln (2) 

Where, 

Ln (S.I) is Natural logarithm of Solubilizing Index of the isolates 

Ln (2) is a natural logarithm of constant when isolate does not solubilize  

Step 2; Determination of Corresponding Absolute Number 

To find corresponding absolute number  

𝑒𝐿𝐷𝐼 = C.A.N  

Step 3 

Finding β 

100%

𝐶. 𝐴. 𝑁
 

Step 4 

Finding the corresponding solubilizing index percentage of the isolates  

C.S.I = 100% -𝛽 

 

3.7 Determination of Phosphate Solubilizing ability in Liquid Media 

A culture of 1 mL of the isolated strains (OD600 = 0.5 nm) were inoculated separately into 

250 ml Conical Flask containing 150 mL of liquid NBRIP medium supplemented with 0.5 

% Tri-calcium phosphate (Thomas Baker, Mumbai India) and incubated at 28°C for 24 

hours. Sterile water inoculated into medium was treated as a control. Approximately 1 mL 

of the supernatant was used after 18000 ×g centrifugation for 5-minute to assess 
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phosphorus released into the solution. Phosphorus in the  supernatant  was determine by 

the molybdenum blue colorimetric method according to Murphy & Riley (1962). The 

reagents were made up of an ascorbic acid and antimony containing acidified ammonium 

molybdate solution. This substance combines quickly with the phosphate ion to produce a 

blue-purple molecule that has an atomic ratio of 1:1 antimony to phosphorus. As long as 

there is at least 2 g/mL of phosphate in the solution, the complex is extremely stable and 

follows Beer's law (Figure 9). The absorbance was measured at a wavelength of 800 nm 

with Ultraviolet and Visible Range Spectrophotometer. 

 

3.8 Determination of Phosphatase Enzyme Activity 

The phosphatase activity was calculated using the method described by Behera et al., 

(2017). A 2.5 ml Eppendorf tube was filled with 1.5 mL of a 24 hour actively growing PSB 

culture that had been initially inoculated in 250 ml of NBRIP broth. The tube was then 

centrifuged at 10,000 rpm for 10 min at 4 ◦C. A culture (1 mL) supernatant was combined 

with 4 mL of Modified Universal Buffer (MUB) (pH 6.5), and then 0.115 M disodium p-

nitrophenyl phosphate (tetrahydrate) was added. The mixture was then incubated at 37 o C 

for one hour. To stop the growth of the microbial culture, a few drops of toluene were 

added to the mixture. In order to disrupt and halt the reaction after incubation, 1 mL of 0.5 

M calcium chloride solution and 4 mL of 0.5 M sodium hydroxide were added. This was 

followed by filtration using Whatman filter paper. A UV-Vis spectrophotometer was used 

to measure the absorbance at 420 nm (Figure 10). A unit of phosphatase enzyme activity 

was defined as the quantity of enzyme that was able to release 1 nmol of p-nitrophenol 

from disodium p-nitrophenyl phosphate in a minute, per one milligram (Rombola et al., 
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2014). MUB was prepared according to Tabatabai & Bremner, (1969). It consisted of 

3.025g Tris-(hydroxymethyl)-aminomethane, 2.9 g maleic acid, 3.5g citric acid, 1.57 g 

boric acid, 1 M Sodium hydroxide (NaOH) solution (122 mL) and distilled water added to 

a final volume of 250 mL. 

 

3.9 Determination of PSB Solubilization Potential of the Isolates in Plant System 

Phenotypic characteristics of potential selected PSB isolates (KB5 and KV1) were 

determined by carrying out an experiment in a screenhouse at MMUST Science Park, 

Incubation and innovation. Two common bean varieties from Kenya Seed Company 

(Rosecoco and Mwetemania) were used as test crops. Certified bean seeds were surface 

sterilized with 1% mercuric chloride for 3 minutes followed by rinsing with distilled water 

thrice and pre-germination in a darkroom using petri dishes. Inoculants were prepared 

according to Mohamed et al.,(2019). The isolates were grown in NBRIB broth for 2 days 

and cells were harvested by centrifugation at 5000 ×g for 20 min. The cells were re-

suspended with sterile distilled water to give a final concentration (108 CFU ml-1) in 250 

mL conical flask. The seedlings’ roots were immersed into the culture for 5 minutes and 

covered uniformly with 15 mm thick layer of vermiculite in a Leonard’s Jars then placed 

into a completely randomized design alongside negative control (un-inoculated seedlings).  

 

A total of six treatments was replicated four times to obtain 24 experimental units with two 

trials. Leonard’s jars assemblies (Clayton et al., 2016) (9 cm diameter, 12 cm height) were 

filled with the sterile vermiculite (Kenworks, Nairobi, Kenya). Tri-calcium phosphate was 

provided as soil inorganic phosphorus fertilizer at the rate of 150 mg /kg based on the 
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nutrient necessities of common bean plants (Abdelmoteleb & Gonzalez-Mendoza, 2020). 

Depth (5cm) was dug into the Leonard’s Jar and two seedlings were placed at equal 

distances. A modified  nutrient solution without phosphorus was supplied to all treatments 

(Olfati, 2015). After 6 weeks, main shoot and root length and number of leaves per plant 

were measured and recorded. The same plants were uprooted and oven-dried at 70°C to a 

constant weight and were grinded after drying to determine total dry weight in grams. 

 

3.10 Bacterial Cell Preparation and Isolation of Genomic DNA. 

Culture cells were harvested from a 48 hour (OD600 = 0.8) actively growing in nutrient 

broth of NBRIB. Approximately 1.5 ml (108 CFU Ml-1) of bacterial culture were pipetted 

into 2 mL micro tubes followed by spinning at 20,000 ×g for 5 minutes in a centrifuge. 

Total DNA of selected PSB isolates was extracted using QIAmp DNA kit (Qiagen, Hilden, 

Germany) according to manufacturer’s protocol. Template DNA (8 µl) was checked for 

quality by electrophoresis in a 2% agarose gel (pre-stained with ethidium bromide 0.5 μg 

ml−1), then visualize on a UV trans-illuminator and photographed. The DNA was stored at 

−20°C for further downstream process analysis. DNA was quantified by Nano drop 

spectrophotometric analysis. 

The following detailed QIAam Protocol of genomic DNA isolation from bacterial 

suspension cultures was used: 

Bacterial culture approximately (1.5 ml) was pipetted into a 2 ml micro centrifuge tube 

followed by centrifugation for 5 min at 20,000 x g. Addition of 180 μL lysis Buffer ATL 

(supplied in the QIAamp DNA Mini Kit) followed by addition 20 μL proteinase K and 

mixing by vortexing, and incubation at 56°C in a water bath until the tissue is completely 
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lysed.  Two hundred microliters of Buffer AL were added to the sample, pulse-vortexing 

for 15 seconds and incubated at 70°C for 10 mi. Addition of 200 μL ethanol (96–100%) to 

the sample and the mixture was carefully applied into the QIAamp Mini spin column (in a 

2 ml collection tube) and centrifugation was performed at 6000 x g (8000 rpm) for 1 mi. 

The filtrate was discarded.  Five hundred microliters of wash buffer AW1 was added 

without wetting the rim and centrifugation done at 6000 x g (8000 rpm) for 1 min. Washing 

for the second time was done using 500 μL wash buffer AW2 followed by high-speed 

centrifugation for three minutes. When eluting the DNA, QIAamp Mini spin column was 

in a clean 1.5 ml micro centrifuge tube and 200 μL elution Buffer AE was added followed 

by incubation for three minutes and lastly final centrifugation at 6000 x g (8000 rpm). 

3.11 Quantification of extracted DNA 

The Extracted DNA was quantified by Nano drop spectrophotometer and the 

concentrations of the DNA of each isolate was measured. The concentration was measured 

alongside the ratios of proteins and other contaminants to check the purity of the DNA 

before   Polymerase chain reactions and DNA Sequencing. 

3.12 Polymerase Chain Reactions (PCR) 

16S rRNA gene was amplified using the following universal primers shown in table 3. 

Table 3. Universal primers for 16S rRNA 

Forward Primer 27 f (5’AGAGTTTGATCCTGGCTCAG 3’) 

Reverse Primer 1492r (5' TACGGCTACCTTGTTACGACTT 3') 

Source :Dos Santos et al., (2019). 
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Gene amplification was carried out in a 25 μL reaction volumes containing 2.5 μL 10X 

DreamTaq buffer (100 mM Tris-HCl, pH 8.0, 500 mM KCl and 1.5 μL 25 mM MgCl), 2.0 

µL, 2.5 mM, dNTPs, 0.5 µL of 27f primer (200 ng/μL), 0.5 μL of 1492r primer (200 ng/μL), 

0.25 μL DreamTaq DNA polymerase (5U/l) and 10 µl of extracted template of Phosphorus 

Solubilizing Bacterial DNA. The reaction volume was accustomed up to 25 μL with sterile 

distilled water.The PCR thermal cycling process consisted of an initial DNA denaturation 

stop at 94°C for 3 minutes, followed by 35 cycles of DNA denaturation (1 min at 94°C), 

annealing stage for 1 minute at 57°C and extension for 2 minutes at 72°C, followed by a 

final elongation stay at 72°C for 8 minutes (Lorenz, 2012). 

 

3.13 Molecular Characterization and Sequencing of 16S rRNA gene 

The 16S ribosomal RNA gene was partially sequenced in order to undertake molecular 

identification of the isolates to the genus level of the chosen PSB strain. The sequences 

collected for this investigation were examined by the BLAST algorithm for comparison of 

a nucleotide query sequence against a public nucleotide sequence database in order to 

identify closely related bacteria against the non-redundant nucleotide BLAST database. In 

order to compare the 16S rRNA gene sequences of the top two solubilizing isolates with 

sequences that was retrieved from the NCBI database, phylogenetic analysis using the 

Neighbor-Joining method was conducted. A phylogenetic tree was constructed to show the 

position of isolated strains with the species of each genus in the NCBI database and the 

species of the isolates were identified with closely related strains. The forward and reverse 

nucleotide contigs were merged using BioEdit 7.2 to reconstruct the full 16S rRNA genes 

and aligned with CLUSTAL W (Tamura et al., 2021) . 
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The phylogenetic tree, which contains PSB sequences  of 16S rRNA gene and sequences 

with high similarity scores from the GenBank database, was constructed with MEGA 11.0 

(Tamura et al., 2021) with 1000 bootstrap analysis. The sequences were then submitted to 

NCBI GenBank database and accession numbers allocated as follows: ON931237, 

ON931235, ON931 236, ON931234, ON931238, ON931233 and ON931239.Evolutionary 

analyses were conducted in MEGA11 (Tamura et al., 2021). Analyses were conducted 

using the Maximum Composite Likelihood model. This analysis involved seven nucleotide 

sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All ambiguous 

positions were removed for each sequence pair (pairwise deletion option). 

 

3.14 Statistical Analysis  

The solubilizing indices data were recorded and entered into Microsoft excel (MS 2016) 

for management. ANOVA was used to determine significance difference between means 

of the replicated isolates on a petri dish. Data were tested for homogeneity using Shapiro-

Wilk and Tukey post-hoc was used to differentiate the means of solubilizing potential at 

p=0.05. IBM SPSS Version 20 software was used for analysis. Data was presented using 

tables (Table 4 and Table 5). Relationship between amount of phosphate and phosphatase 

enzyme activity was analyzed using Pearson’s correlation (Coefficient r) with a stats model 

package in Python 3 to test significance relationship between mineralization potential of 

each isolate. Data was presented using tables and graphs (Table 6 and Figure 8). 

Screenhouse data (Phenotypic/Growth parameters) were analyzed using a two ANOVA to 

test significantly different at Tukey p≤0.05. Biomass data were graphically plotted by 

Matplotlib package in Python 3 (Figure 12) while the rest of data were presented using 
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tables and figures (Table 11, Table 12 and Figure 12).  

 

Nucleotide sequences of the PSB isolates were compared with references strains from 

NCBI GenBank database. Raw sequences were cleaned, edited and assembled Using 

BioEdit 7.2. BLAST algorithm was used to analyze the sequences of the isolates to identify 

closely related organism. Nucleotide distribution, Nucleotide alignments (CLUSTAL W)  

and phylogenetic analysis was performed using Maximum Likelihood method in MEGA 

software version 11 with bootstrap significant value to determine the robustness (Tamura 

et al., 2021). Staphylococcus aureus strain ACTT 12600 was used an out-group. Original 

phylogenetic tree (Appendix III) was exported to Fig tree for visualization (Figure 12).
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CHAPTER FOUR 

RESULTS 

4.1 Mineralization Potential of Phosphorus Solubilizing Bacteria  

4.1.0 Quantitative Screening of Phosphate by PSB Strains in Agar Plates 

Formation of clear zones around the colony was an indicator of Tri-calcium phosphate 

solubilization by the isolates (Figure 7). Seven isolates out of twenty-six were able to 

solubilize phosphates in agar plates by forming the halo zones. The colony diameter (C.D) 

and halo zone diameter (H.D) of each isolate was measured and Solubilization Index (SI) 

was calculated after seven days’ incubation at 28 ºC (Table 4). The phosphate solubilization 

index of tested bacterial strains ranged from 2.34 to 4.17 Isolate B5 displayed a highest 

solubilizing index of 4.17 followed by strain KV1 with 3.64. Isolate KK3 followed (2.60), 

KKI (2.54), KB3 (2.52), and KB2 (2.40). The least performed isolate was KBU with SI of 

2.34 in the agar plate. 

 

Figure 7.Formation of clear zones of solubilization by isolates. (a) KB5, (b) KB2, (c) KB3 

on an agar plate. 
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Table 4. The mineralization potentials of each isolate.  

 

Table 5. The percentage mineralization potentials of each isolate;  

Percentage Corresponding Solubilizing Index (C.S.I) of each isolate. S.I is Solubilizing 

Index L.D.I, Logarithmic divergence index, C.A.N, corresponding absolute number. 

 

Isolate C.D  H. D S. I 

KB5 0.53 ±0.06 1.68 ±0.10 4.17a 

KB3 0.77 ±0.15 1.17 ±0.15 2.52c 

KB2 0.93 ±0.06 1.30 ±0.10 2.40c 

KV1 0.58 ±0.19 1.53 ±0.15 3.64ab 

KK1 0.67 ±0.08 1.03 ±0.15  2.54c  

KK3 0.47 ±0.15 0.75 ±0.12  2.60bc 

KBU 0.88 ±0.12 1.18 ±0.16 2.34d 

C.D is Colony diameter ± SD (cm), H.D is halo zone diameter ± SD (cm) and column S.I 

is Solubilizing Index. S.I values with same superscript letters indicate statistical 

significance according to turkey test at 5 % (p ≤ 0.05) 

Isolate S. I L.D. I C.A. N β C.S.I (%) 

KB5 4.17 0.73 2.08 47.96 52.04 

KB3 2.52 0.25 1.29 79.38 20.62 

KB2 2.40 0.15 1.17 83.41 16.59 

KV1 3.64 0.61 1.85 54.98 45.02 

KK1 2.54 0.24 1.27 78.82 21.18 

KK3 2.60 0.30 1.35 77.05 22.95 

KBU 2.34 0.16 1.17 85.44 14.56  
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4.1.1 Quantitative Screening of Phosphates Solubilized by Isolates in Broth Medium 

In the current investigation, isolate KV1 yielded more soluble phosphates (1440.92 

µg/mL), whereas isolate KB5 showed similar capability for P solubilization at 1370.06 

µg/mL (Table 6). Equivalent phosphorus solubilization capacity was shown by the isolates 

KK1 and KBU, which both solubilized P at concentrations of 1292.88 µg/mL and 1236.65 

µg/mL, respectively. Isolates KB2 and KB3 produced phosphate concentrations of 1189.03 

µg/mL and 1149.15 µg/mL, respectively, and they both carried out phosphate 

mineralization on agar plates in a manner that was comparatively similar. In broth media, 

the Kakamega County KK3 isolate's solubilization potential for phosphorus was the lowest 

(453.90 µg/mL). The concentration was determined using Beer Lampert standard curve for 

determining phosphate concentration (Figure 9). 

 

4.1.2 Determination of Phosphatase Enzyme Activity  

Isolate KV1 had the highest phosphatase enzyme activity, with a value of 94.92 nmol/min, 

followed by KB5 (91.49 nmol/min), KK1 (72.24 nmol/min), and KB2 (45.36 nmol/min), 

while KBU and KB3 had values of 39.59 nmol/min and 32.22 nmol/min respectively. The 

least effective isolate, KK3, had an activity of 22.55 nmol/min (Table 6). According to a 

correlation analysis, there is a substantial positive association between the number of 

phosphates in the medium and the activity of the phosphatase enzyme (Correlation 

coefficient of r2 = 0.83; Figure 8). The concentration was determined using Beer Lampert 

standard curve for determining amount of p-Nitrophenol (Figure 10). 
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Table 6 . Correlation between amount of phosphate in broth and phosphatase activity 

Isolate  Amount of phosphate in broth and phosphatase activity 

  P (ug/ml)  

Phosphatase activity (nmol min-

1)  

KB5 1370.06 ±39  91.49 ±34    

KB3 1149.15 ±4  32.22 ±4.3    

KB2 1189.03 ±9  45.36 ±5    

KV1 1440.92 ± 92 94.92 ±24    

KK1 1292.88 ±6  72.24 ±13    

KK3 453.90 ±36  22.55 ±3    

KBU 1236.65 ±52  39.59 ±0.8       

Mean of phosphatase enzyme activity and amount of phosphate in liquid medium. 

Correlation   R2 = 0.83 

 

 

 

Figure 8. Amount of solubilized phosphorus and Phosphatase enzyme activity by each 

PSB isolate. 
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Figure 9. Beer Lampert standard curve for determining phosphate concentration. 

 

Figure 10. Beer Lampert standard curve for determining amount of p-Nitrophenol. 
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4.2 Molecular Characterization of Phosphorus Solubilizing Bacteria  

4.2.1 Isolate’s DNA quantity determination using Nano drop spectrophotometer 

The purity of the DNA isolated from all the bacteria isolates was ≥ 1.8 at absorbance ratio 

260/280 indicating less contamination with proteins and higher concentration of DNA 

(Appendix II). At absorbance ratio 260/230, the ratios of the DNA were ≥ 1.8, indicating 

free contamination from organic compounds.  

4.2.2 Determination of Isolate’s DNA quality using Gel –Electrophoresis 

The DNA was also checked for integrity using Gel electrophoresis (Figure 11). 16S r RNA 

gene has almost similar size characteristic as evidence by equal bands of template DNA 

after polymerase chain reaction product of the isolates (Figure 11). Samples were analyzed 

together with 1 Kb ladder of approximately 1200 base pairs. The results indicated that 

DNA samples were approximately 1200 base pairs. L (1.2kb DNA Ladder), Lane 2, KBU, 

Lane 3, KB3, Lane 4, KB5, Lane 5, KBU, Lane 6, KK1, Lane 7, KK3 and Lane 8, KV1. 

 

Figure 11. A 16s ribosomal partial gene of the isolates after gel electrophoresis in 1.5% 

agarose gel.  
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4.2.3 BLAST and Nucleotide Sequence Characteristics 

Upon sequencing the 16S rRNA gene, the nucleotide sequences of the isolates were all 

approximately 1300 base pairs long and 1.2kb (Figure 11) after amplification by PCR. 

Table 7 shows the specific identities of the isolates after nucleotide blasting in the NCBI 

gene bank. The blasting revealed that the isolates belong to two genera; Enterobacter and 

Pseudomonas. In a complementary identification, KB5 isolates with 1249 base pairs from 

Bungoma County was presumably matched to be belonging to Pseudomonas kribbensis 

with 99.60 percentage identity from the gene bank while KB2 from same region with 1104 

base pairs was identified with 98.57% as Enterobacter bugandensis. KBU isolates which 

was from Busia County with 1260 base pairs was matched with Enterobactor tabaci with 

99.28 % identity while KB3 and KK3 from Bungoma and Kakamega counties were 

identified as Enterobacter mori with 99.07% (1065 bp) and 98.51% (1059 base pairs) 

respectively. KVI isolate with 1029 base pairs from Vihiga County was identified as 

Enterobactor asburiae with 98.36% identity   while KK1 isolate from Kakamega with 1262 

base pairs was identified as Enterobactor cloacae with 98.97 % identity. All the 16S 

Ribosomal gene nucleotides sequences of the phosphorus solubilizing isolates were 

submitted under submission ID SUB11747981 to GenBank and they were assigned 

accession numbers indicated in Table 7. 
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Table 7. Molecular identities of the isolates basing on 16S ribosomal gene 

 

Isolate  

Isolation 

Site P.I  E.V Strain Name 

Accession 

Number.  

KB5 Bungoma 99.60% 0.0 Pseudomonas Kribbensis ON931237 

KB3 Bungoma 99.07% 0.0 Enterobacter mori ON931235 

KB2 Bungoma 98.57% 0.0 Enterobacter bugandensis ON931236 

KV1 Vihiga 98.36% 0.0 Enterobacter asburiae ON931234 

KK1 Kakamega 98.97% 0.0 Enterobacter cloacae ON931238 

KK3 Kakamega 98.51% 0.0 Enterobacter mori ON931233 

KBU Busia 99.28% 0.0 Enterobacter tabaci ON931239  

NCBI, Blast search analysis; P.I, Percentage identifies, E.V, Expected Value, Sixth 

Column represents accession numbers from GenBank. 

 

4.2.4 Nucleotide Base Sequence Distribution 

Results showed that there was high distribution of Cytosine (C) base with an average 

percentage of 30.5 (Table 8) amongst all the isolates except isolate KB5 which had 22.1% 

cytosine base. Distribution of Guanine bases followed with an average percentage of 25.3 

and Isolate B5 had highest guanine base distribution of 31.3 % across the gene. This was 

followed by thymine base with 24.6 % while adenine had the least with 20.6 %. 
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Table 8. Nucleotide Distribution Frequencies across 16S rRNA gene sequence for each 

isolate 

Isolate T(U) C A G Total (kb) 

KK3 25.3 31.9 19.7 23.5 1061 

KV1 25.4 32.1 19.4 23.1 1029 

KB3 25.4 31.9 19.7 22.9 1065 

KB2 25.4 31.6 19.8 23.2 1104 

KB5 21.1 22.1 25.5 31.3 1249 

KK1 24.8 32.4 19.7 23.1 1262 

KBU 25.2 32.2 19.7 22.9 1259 

Average  24.6 30.5 20.6 25.3 1147 

Nucleotide distribution frequencies (MEGA Version 11). All frequencies are given in 

percentage. 

 

4.3 Phylogenetic analysis of Isolates using Neighbor Joining Analysis 

After multiple sequence alignment of the isolate using Clustal W (Appendix V.), A 

phylogenetic relationship was determined with 1000 bootstrap statistical analysis and a 

construction of a phylogenetic tree with values greater than 60 bootstrap (Appendix III). 

The three results were visualized using fig tree software (Figure 12). The phylogenetic tree 

of the PSB isolates using neighbor joining method separated the isolates into two main 

clusters when compared with other closely related reference organism downloaded from 

the NCBI database. The Enterobacter spp, genus contained six isolates, clustered together 

forming a related clade while one isolates Pseudomonas kribbensis forms its own clade 

revealing a distant relative to Enterobacter spp,. Staphylococcus aureus strain ATCC12600 

was analyzed as an outgroup organism forming its own branch.  
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Figure 12. A tree showing phylogenetic relation between isolates with Staphylococcus 

aureus as an out-group. The nodes of the tree are colored as per the legend in which the 

color corresponds to approximate bootstrap support value. 
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The number of base substitutions per site from between sequences are shown. There were 

a total of 1262 positions in the final dataset. Isolate KB5 and KB3 displayed a greater 

evolutionary divergence index among the isolates while KK3 and KB3 displayed least 

evolutionary divergence among other isolates (Table 9).  

Table 9. Estimates of Evolutionary Divergence between isolates 

 

4.4 Determination of Plant Growth Characteristics of Potential PSB 

In general, all the two isolates (KB5 and KVI) significantly promoted the growth 

parameters (shoot biomass, root biomass, number of leaves and shoot length) of 

Mwetemania and Rosecoco bean varieties which are the common legumes grown in 

Western Kenya for food. 

 

4.4.1 Effects of PSB on Growth Characteristics of Rosecoco Bean Variety  

In overall, inoculation with KVI and KB5 strain displayed substantial escalation in number 

of leaves as compared with controls (Table 10). A Rosecoco variety inoculated with KV1 

  KK3 KV1 KB3 KB2 KB5 KK1 KBU 

KK3        

KV1 3.022       

KB3 0.369 3.380      

KB2 4.280 3.918 4.366     

KB5 4.900 3.511 5.195 2.648    

KK1 2.827 4.026 1.127 2.838 3.625   

KBU 4.227 2.677 3.625 2.871 4.673 3.521   
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was able to grow with 27.00 average number of leaves per plant while isolate B5 inoculated 

into same variety grows to 22.25 average number of leaves per plant while plants that didn’t 

receive any inoculant (Control) grows to 14.75 average number of leaves per plant. KB5 

increase the shoot length of Rosecoco at 14.9 cm while KV1 at 16.4 cm while control was 

able to increase to a length of 11.24 cm. 

Table 10. Effects of PSB bacteria inoculation on growth characteristics of the Rosecoco 

Treatment  

Plant Growth Parameter B5 Inoculant  KV1 Inoculant  Control 

Number of leaves per plant  22.25 ± 4.03bc 27.00 ± 4.24a 14.75 ± 2.06d 

Shoot length (cm) per plant 14.90 ± 0.37b 16.4 ± 0.51a 11.24 ± 1.27c 

Plant dry weight (g) per plant  6.52 ± 1.22a 3.97 ± 0.86bc 2.06 ± 0.78c 

Root weight (g) per plant  0.84 ± 0.11a 0.725 ± 0.15ab 0.44 ± 0.18c 

Means ± SD values with same statistical letter (s) within rows are not significantly 

different. (Two Way ANOVA test p≤0.05 at turkey post hoc). 

 

4.4.2 Effects of PSB on Growth Characteristics of Mwetemania Bean Variety 

Mwetemania variety grows significantly after inoculated with KV1 isolate as it was able 

to yield a number of leaves of 30 per plant (Table 11). KB5 Isolate followed with 24.75 

average number of leaves per plant while control plants grow to 18.25 number of leaves 
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per plant. Inoculation of Isolate KV1 greatly increased the shoot lengths of Mwetemania 

up to 17.75 cm while the control was the least in shoot length with 10.4 cm long. 

Table 11. Effects of PSB bacteria inoculation on growth characteristics of the 

Mwetemania 

Treatment  

Plant Growth Parameter KB5 Inoculant KV1 Inoculant Control 

Number of leaves per plant  24.75 ± 2.87abc 30.5 ± 5.17a 18.25 ± 2.75cd 

Shoot length (cm) per plant 13.85 ±0.90b 17.75 ± 0.79a 10.40 ± 0.53c 

Plant dry weight (g) per plant  6.15 ± 1.14a 4.08 ± 0.75b 2.15 ± 0.81c 

Root weight (g) per plant  0.69 ± 0.10ab 0.73 ± 0.31ab 0.37 ± 0.15b 

Means ± SD values with same statistical letter (s) within rows are not significantly 

different. (Two Way ANOVA test p≤0.05 at turkey post hoc). 

 

4.4.3 Effects of PSB on Biomass of the Bean Varieties  

In terms of shoot dry weight, KB5 isolate performed better in the two bean varieties as it 

yielded an average 6.52 grams per plant in Rosecoco and 6.15 grams per plant in 

Mwetemania.KV1 isolate yielded a shoot dry weight of 4.08 grams in Mwetemania variety 

and 3.97 grams in Rosecoco variety. The negative controls of Mwetemania and Rosecoco 

yielded 2.15 grams and 2.06 grams respectively. In root biomass, the performance was 

consistently similar to shoot biomass as B5 isolate also performed greatly in both 

Mwetemania and Rosecoco with 0.69 grams and 0.84 grams respectively.KV1 isolate 
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followed with 0.73 grams in Mwetemania and 0.72 grams in Rosecoco. Negative Controls 

yielded 0.44 grams in Rosecoco and 0.37 grams in Mwetemania (Figure 13 and 14). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Plant growth parameters of Rosecoco and Mwetemania bean varieties after 42 

days of. Inoculation with KB5 and KVI Phosphorus solubilizing bacteria. N.C denotes a 

negative control. Plant biomass and Root biomass are   means of   dry weights in grams while 

shoot length is means in cm. letters at the top of error bars represents significant differences 

at p≤0.05. 
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Figure 14.( I) Box plot showing the effects of bacteria strains inoculation on total biomass 

of a Rosecoco variety under phosphorus free nutrient in a Screenhouse. (a) Non- inoculated 

Control. (b) Inoculated with KB5 strain. (c)Inoculated with KV1 strain. (II) Effects of 

bacteria strains on total biomass in grams for both varieties (a) Biomass of negative control 

(b) Biomass of plants inoculated with KB5 (c) Biomass of plants inoculated with KV1 
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CHAPTER FIVE 

DISCUSSION 

5.1 Mineralization Potential of Phosphorus Solubilizing Bacteria Isolates   

Common beans' roots and rhizosphere contain nitrogen-fixing and nodulating bacteria, 

however there are also other helpful rhizobacteria, such as PSB, that successfully colonize 

bean roots and nodules and support plant growth and development (Bhattacharyya & Jha, 

2012; Figueiredo et al., 2008; Wekesa et al., 2021). Phosphorus in the soil, which is 

recognized as the second most important indicator of soil fertility after nitrogen, is 

necessary for the early stages of plant development (Razaq et al., 2017). Legumes 

including common beans demand a lot of P due to their capacity to fix nitrogen through 

nodulation and their symbiotic relationship with PSB (Mitran et al., 2018). In the present 

study, it was found out that PSB naturally resides in the rhizosphere of common beans and 

interacts with nitrogen-fixing bacteria to influence plant performance in phosphorus-

depleted soil. Amongst the seven investigated isolates, KB5 and KV1 isolates showed the 

greatest ability for mineralization and phosphate solubilization. These two PSB isolates 

demonstrated phosphate solubilization in broth test and agar assay at almost same levels, 

as well as phosphatase enzyme activity. This demonstrates that the PSB isolates' tendency 

to solubilize phosphate in both agar and broth testing was consistent with other 

investigations' findings from Rahman et al., (2014) ,  Tariq et al., (2022) and  Z. Wang et 

al., (2022b). The highest levels of phosphate solubilization, the highest levels of 

phosphatase enzyme activity, and the highest potential for bio-inoculant creation for 

sustainable agricultural output were seen in isolates KV1 and KB5, respectively (Alori et 

al., 2017). Evidence that the phosphatase enzyme contributes to the process of phosphate 
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solubilization ability in bacteria as previously reported may be found in the high connection 

between phosphatase activity and the amount of phosphorus solubilized (Anil & Lakshmi, 

2010; Behera et al., 2017; Cabugao et al., 2017). 

 

5.2 Molecular and Phylogenetic Characteristics of Phosphorus Solubilizing Isolates  

The phosphorus-solubilizing bacteria isolated from the rhizosphere of common beans in 

Western Kenya belonged to two generic clusters of Enterobacter spp. and Pseudomonas 

spp., and they have also been previously reported in other host plants according to a 

molecular analysis of the seven isolates using partial sequencing of a 16S ribosomal gene 

(Thakur & Putatunda, 2017; Yadav et al., 2014). The group of Enterobacter spp, 

dominated the strains of study since out of the seven isolates, six were closely identified to 

be  related  to Enterobacter spp, The Enterobacter spp. have been previously reported in 

other plant rhizospheres and they have high potential for phosphorus solubilization but very 

little information is associated with common beans (Kirui et al., 2022; Mendoza-Arroyo et 

al., 2020). Pseudomonas sp. has been isolated and recognized as one of the most effective 

phosphorus-solubilizing bacteria in both monocots and dicots in earlier investigations 

(Blanco-Vargas et al., 2020; Waday et al., 2022; Yu et al., 2022) which exhibits future use 

as bio-inoculants . Out of the seven isolated strains from Western Kenya, two strains (KB5 

and KV1) were assessed for their efficacy in vitro and in vivo in mineralization of inorganic 

phosphates and plant growth characteristics. Among the tested PSB strains from the region, 

KB5 which was closely related to Pseudomonas kribbensis and KV1 which was closely 

related to Enterobacter asburiae displayed maximum phosphate solubilization in both agar 

and broth medium respectively. 
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5.3 Influence of Potential PSB Isolates on Plant Growth Promoting Characteristics 

KB5 and KVI isolates were chosen for screening in the screen house based on their best 

results in phosphatase enzyme activity, the number of phosphates converted in agar and 

broth assays, and their ability to promote the growth of the Rosecoco and Mwetemania 

bean varieties, which are mostly grown in Western Kenya. The performance of the isolates 

in terms of total dry weights was significantly different when determining the plant biomass 

of the two bean varieties. In comparison to the KV1 isolate and the negative control, strain 

B5 had a considerable impact on the biomass of the plants. In terms of plant morphological 

features (plant height and number of leaves), isolates KV1 outperformed isolate B5 (Table 

10 and 11). This was also supported by the plant variety, as Mwetemania outperformed the 

Rosecoco type. B5–Pseudomonas kribbensis is genetically related to other previously 

studied Pseudomonas sp. including  Pseudomonas fluorescens (Otieno et al., 2015; Yadav 

et al., 2014) and Pseudomonas koreensis (Srivastava et al., 2019)  that have been reported 

to highly solubilize phosphorus and promoted plant growth characteristics and therefore 

the isolate may exert a vital  impact  in  common bean  nutrition, through the absorption of  

soluble phosphorus. Given that the KV1 strain (Enterobacter asburiae) has been 

previously  reported to boost plant growth parameters under harsh conditions (Mahdi et al., 

2020), we also report that it can boost the growth and development of leguminous plants 

in phosphorus-depleted soils in the current study. 
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CHAPTER SIX  

CONCLUSIONS, RECOMMENDATIONS AND SUGGESTIONS FOR FURTHER 

RESEARCH  

6.1 Conclusions 

1. PSB extracted from the rhizosphere of common beans are novel and can be found 

in a variety of microbial communities. In the present study and literature review, 

we have    isolated, identify and characterize phosphorus-solubilizing bacterial 

strains from the rhizosphere of common beans for the first time in Western Kenya 

soil. Two possible PSB strains, KVI-Enterobacter asburiae and KB5-

Pseudomonas kribbensis, have been identified among the isolated strains as being 

promising and very effective strains that can be employed to address the issue of 

phosphorus deficiency in soil for long-term crop production. In conclusion, the 

isolates were also able to mineralize high phosphorus concentrations in both agar 

media and broth medium as well as enzymatic activity. 

2. The PSB isolates from this study belonged to Pseudomonas and Enterobacter 

genus as characterized using molecular identification through 16S ribosomal RNA 

partial sequencing and phylogenetic relationship. Most of Enterobacter isolated in 

the study were closely related.  

3. Investigating the effects of genetically diverse phosphorus solubilizing bacteria on 

the phenotypic traits of Rosecoco and Mwetemania bean varieties as well as 

evaluating their mineralization potential is a way to understand the growth-

promoting characteristics of these bacteria as well as a justification for the 

application of useful bio-inoculants to leguminous crops for sustainable production 
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in tropical regions (Alori et al., 2017). In addition to being able to greatly increase 

plant development parameters., The study  is a  contribution to the solution  of food 

insecurity in Kenya and Sub-Saharan Africa is it intends to improve and sustain 

agriculture, sometimes known as " climate smart agriculture" (Newell et al., 2019). 

One of the reliable and early-maturing crops that can easily be used to  reduce 

hunger in Africa is common beans (Common Beans Kenya, 2020). Mwetemania 

and Rosecoco are not only important agricultural crop in providing food but also 

have some health benefits. Mwetemania are known for reducing cholesterol and 

blood sugar levels due to their high fiber and folate contents (Nchanji & Ageyo, 

2021).  

 

6.2 Recommendations 

1. The present study did not address some of the parameters including determining P 

availability in soil and plant system after the PSB Inoculation. This could be a basis 

for future investigations involving mineralization of PSB colonizing common 

beans. This study involved use of Tricalcium phosphate as a source of organic 

phosphate. In the years to come, we advise future researchers using Tricalcium 

phosphate (TCP) to include either aluminum phosphate (AIPO4) or iron phosphate 

(FePO4) to test bacteria mineralization. P solubilization using these compounds is 

highly recommended due to the fact that TCP is a weak phosphate. 

2. Future research can examine PSB strains that colonize common bean roots and 

nodules based on phosphorus activating genes, genome-based characterization, 

comparisons, and gene identification responsible for the solubilization of phosphate 
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in these PSB isolates, as well as metagenomics to comprehend the influence of 

genetic factors on the strains and the diversity of endophytic microbial 

communities, in order to fully assess the usefulness of these potential strains as 

microbial fertilizers. Future research should also focus on gaining a better 

understanding of these bacteria's interactions with nutrients, especially phosphorus, 

so that compatible organisms can be identified and used as effective inoculants in 

sustainable plant production systems in specific regions. 

3. Lastly, basing on the findings of the study, we highly recommend the use of KV1 

and B5 isolates to be used as potential biofertilizers since they displayed maximum 

efficacy in plant growth promotion. 

 

6.3 Suggestions for Further Research 

1. Genetic diversity of PSB using other genetic makers such as rec A , gyrase B  is 

required in ecological sites of Western Kenya basing on the fact that the present 

study only employed 16S rRNA genetic maker. 

2. To expand the knowledge of the phylogenetic diversity of PSB in plant rhizosphere, 

an extended analysis of genomes of bacterial families through metagenomics 

analysis is considered a current field of study that future and present scientist should 

search on. 

3. Screening of diverse PSB colonizing other plants including cereals and leguminous 

plants is urgently needed for development of biofertilizers suitable for each plant.  
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APPENDICES 

Appendix I. Isolate’s growth on plates  
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Appendix II. DNA Quantification analysis of the isolates using spectrophotometer 

Isolates Concentrations (ng/µl) A260/280 A260/230 

KB2 409.9 2.15 2.42 

KB3 1292.2 2.21 2.48 

KB5 1412.6 2.24 2.47 

KBU 1287.5 2.19 2.49 

KK1 1330.5 2.2 2.42 

KK3 1354.4 2.22 2.46 

KV1 1356.56 2.23 2.43 

U.V Spectroscopy. 
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Appendix III. A Phylogenetic tree of the isolated PSB strains with reference 

organism and an outgroup organism 
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Appendix IV. NCBI GenBank information for KB5 isolate 
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Appendix V. Multiple sequence alignment (Clustal W) of 16S rRNA Gene 
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Appendix VI. FASTA file sequences for PSB isolates  
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Appendix VII. Sequence of the isolate KV1 produce by 16S rRNA partial 

sequencing 
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Appendix VIII. Screening of plants treated with inoculants   
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Appendix IX. Spectrophotometric values  

Concentration of P  OD 880 

0 0 

0.125 0.09525 

0.25 0.17725 

0.375 0.2665 

0.5 0.362 

0.625 0.44425 

0.75 0.541 

0.875 0.63875 

1 0.74375 

1.125 0.81825 

 

Concentration of p-nitrophenyl OD 420 

0 0 

1 0.09975 

2 0.195 

3 0.2935 

4 0.39725 

8 0.82875 

10 0.99075 
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Appendix X.  Research Proposal Approval Letter  
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Appendix XI. NACOSTI Research Permit  
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Appendix XII. Research Article   


