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Abstract

This study presents a stochastic predator-prey model in a three-patch ecosystem, motivated by cage-based fish

farming. Each patch hosts prey and predator populations, with inter-patch prey migration and unbounded

variations in the population represented by stochastic terms. The model integrates logistic prey growth,

predation, and mortality within a coupled system of stochastic differential equations. We assess stochastic

stability using stochastic Lyapunov function methods. Numerical simulations confirm that when predator

efficiency ei < 1, the total population remains bounded, indicating stability. However, for ei > 1, the system

becomes unstable. The model also demonstrates that prey populations remain viable under low harvesting rates

(ν1 = ν2 = ν3 = 0.02) and moderate noise intensities (0.10 ≤ σ ≤ 0.90). This work contributes to sustainable

resource management by offering a robust framework for modeling predator-prey interactions in multi-patch

environments.

Keywords: Stochastic differential equations (SDEs), Multi-patch ecosystem, stochastic Lyapunov function,

Predator-prey model.
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1 Introduction

Predator-prey interactions are fundamental processes that govern ecological dynamics, influencing population stability,

community structure, and ecosystem health [5, 12, 18, 21]. Classical models, such as the Lotka–Volterra system,

have provided foundational insights into these dynamics by illustrating cyclic patterns of growth and decline between

predator and prey populations [18]. However, such deterministic models often oversimplify ecological reality by assuming

homogeneous environments and ignoring random environmental fluctuations and spatial structure.
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Effective management of ecosystems, especially fisheries, requires models that account for both spatial heterogeneity and

stochasticity. Management strategies such as harvesting, if poorly planned, can lead to overexploitation and eventual

population collapse [9, 11, 17]. Harvesting is typically modeled in two forms: constant yield, where a fixed amount of

biomass is removed over time [4], and constant effort, where removal is proportional to the current stock and fishing effort

[1]. Both strategies significantly influence the population dynamics of prey and predators and require careful calibration

to avoid extinction scenarios [19, 33].

Real-world ecosystems are often spatially structured, comprising multiple patches or habitats with differing environmental

conditions [15]. Species movement across these patches can affect local and global population stability. Multi-patch

models, therefore, offer a more realistic framework for studying ecological interactions. Several studies have explored

harvesting in predator-prey systems under deterministic frameworks [2, 3, 10, 23, 31], with harvesting treated as a

dynamic variable [27, 28, 29, 30].

Incorporating stochasticity into ecological models allows for the capture of unpredictable influences such as environmental

variability and demographic fluctuations [13, 26]. Stochastic models, typically formulated as stochastic differential

equations (SDEs), have been applied to fisheries to evaluate sustainability under environmental noise [14, 20]. These

models reveal that increased variance in population due to stochastic perturbations can destabilize otherwise stable

systems. However, most studies remain limited to one or two spatial zones, which constrains their applicability to real

ecosystems characterized by more complex spatial dynamics.

Cage farming has grown rapidly in Lake Victoria and other regions. Despite its growth, there is limited research

addressing the ecological and mathematical modeling of predator-prey dynamics within such spatially confined systems.

In particular, the role of inter-cage prey migration, environmental noise, and optimal harvesting remains underexplored

[24].

While some models have considered optimal harvesting in dual-zone ecosystems, such as free fishing and protected areas

[8, 25], these approaches often assume constant harvesting efforts and simplified migration dynamics. Realistically,

harvesting is influenced by market, regulatory, and technological factors, and migration patterns are often complex and

nonlinear.

To address these gaps, this study develops a stochastic predator-prey model within a three-patch ecosystem that reflects

the spatial structure of cage aquaculture. The model incorporates logistic prey growth, predator-prey interaction, inter-

patch migration, and stochastic noise. Unlike previous studies, it extends stochastic modeling to three interacting patches,

thereby offering a more realistic framework for analyzing ecological dynamics and informing sustainable harvesting

practices.

2 The Model

The total fish population under study, denoted by V (t), comprises six interacting classes across three distinct patches:

prey population in patch-1 (N1), predator population in patch-1 (M1), prey population in patch-2 (N2), predator

population in patch-2 (M2), prey population in patch-3 (N3), and predator population in patch-3 (M3). Each patch is

enclosed by mesh structures that allow constant migration of fingerlings of the prey species between patches, resulting
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in interconnected dynamics. The model is developed under the assumption that each patch within the ecosystem is

homogeneous in terms of environmental conditions (such as water temperature, pH level, water flow, and exchange rates

of waste products) and resource availability (food supply, water quality). The prey population in each patch grows

logistically in the absence of predators, with intrinsic growth rate ri and carrying capacity Ki, while predators feed on

prey at a rate ai, contributing to predator growth at rate γi. Predators also experience natural mortality at rate µi, and

both prey and predators are subject to harvesting at controlled rates νi. Prey migration is governed by directional rates

α1 through α6, with each cage (patch) supporting a different population due to spatial heterogeneity.

The fish population is further assumed to exhibit stochastic fluctuations resulting from unbounded variations in the

population captured using white noise terms dηt, dξt, and dϵt, modeled as Wiener processes ∼ N(0, dt). This leads to a

system of stochastic differential equations:

dN1 =

(
r1N1

(
1− N1

K1

)
− a1N1M1 − ν1N1 + α4N2 + α3N3 − (α1 + α6)N1

)
dt+ σ1N1dηt,

dM1 = (γ1N1M1 − µ1M1 − ν1M1)dt+ σ1M1dηt,

dN2 =

(
r2N2

(
1− N2

K2

)
− a2N2M2 − ν2N2 + α1N1 + α5N3 − (α2 + α4)N2

)
dt+ σ2N2dξt,

dM2 = (γ2N2M2 − µ2M2 − ν2M2)dt+ σ2M2dξt,

dN3 =

(
r3N3

(
1− N3

K3

)
− a3N3M3 − ν3N3 + α2N2 + α6N1 − (α3 + α5)N3

)
dt+ σ3N3dϵt,

dM3 = (γ3N3M3 − µ3M3 − ν3M3)dt+ σ3M3dϵt. (1)

with initial conditions:

N1(0) = N1 ≥ 0,

N2(0) = N2 ≥ 0,

N3(0) = N3 ≥ 0,

M1(0) = M1 ≥ 0,

M2(0) = M2 ≥ 0,

M3(0) = M3 ≥ 0. (2)

The total population at time t is given by:

V (t) = N1(t) +N2(t) +N3(t) +M1(t) +M2(t) +M3(t) (3)
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3 Model Analysis

3.1 Positivity of the model

The variables N1,M1, N2,M2, N3,M3 represent populations, so they should remain non-negative.

Lemma 1. Under initial conditions (2), all the solutions N1,M1, N2,M2, N3,M3 of the system (1) remain nonnegative

for t ≥ 0

Proof. For the prey population, the equations for N1, N2, N3 are of the form;

dNi

dt
= riNi

(
1− Ni

Ki

)
− (non-negative terms) + (migration terms).

The term riNi

(
1− Ni

Ki

)
is non-negative when Ni ≥ 0, as the logistic growth ensures Ni ≥ 0. Predation (−aiNiMi) and

harvesting (−νiNi), act as sinks but cannot make Ni negative if Ni ≥ 0. Migration input terms (αijNj) are non-negative,

adding to the population. Thus, if Ni(0) ≥ 0, then dNi
dt

ensures Ni(t) ≥ 0 for all t ≥ 0.

For the predator population, the equations for M1,M2,M3 are of the form;

dMi

dt
= γiNiMi − (µi + νi)Mi.

The term γiNiMi is non-negative for Ni ≥ 0 and Mi ≥ 0. The mortality terms (−µiMi and −νiMi) act as sinks but

cannot make Mi negative if Mi ≥ 0. Thus, if Mi(0) ≥ 0, then dMi
dt

ensures Mi(t) ≥ 0 for all t ≥ 0.

The initial conditions Ni(0) ≥ 0 and Mi(0) ≥ 0 hold, the structure of the equations ensures that all solutions Ni(t) and

Mi(t) remain non-negative for all t ≥ 0. Thus, positivity of the system.

3.2 Boundedness of the model

Proposition 1. Under initial conditions (2), the total population function

V (t) =

3∑
i=1

(Ni(t) +Mi(t))

remains bounded for all t ≥ 0.

Proof. To prove the boundedness of the solutions for the given system of differential equations, we used the LaSalle

Invariance Principle [16] and analyzed the structure of the system. We need to sought a function that is non-negative

and has the following properties; decreases along the trajectories of the system, and bounds the populations, meaning it

does not increase without bound as t → ∞.

Let the total population of the system be represented by the function;

V (t) = N1(t) +N2(t) +N3(t) +M1(t) +M2(t) +M3(t)

where Ni(t) and Mi(t) denote the prey and predator populations in patch i respectively, for i = 1, 2, 3. We aim to show

that V (t) remains bounded for all t ≥ 0. This function, V (t), was always non-negative because populations cannot be
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negative.

Differentiating V(t) with respect to time gives;

dV

dt
=

dN1

dt
+

dM1

dt
+

dN2

dt
+

dM2

dt
+

dN3

dt
+

dM3

dt

Substituting the system of equations into this derivative;

dV

dt
=

(
r1N1

(
1− N1

K1

)
− a1N1M1 − ν1N1 + α4N2 + α3N3 − (α1 + α6)N1

)
+(γ1N1M1 − µ1M1 − ν1M1)

+

(
r2N2

(
1− N2

K2

)
− a2N2M2 − ν2N2 + α1N1 + α5N3 − (α2 + α4)N2

)
+(γ2N2M2 − µ2M2 − ν2M2)

+

(
r3N3

(
1− N3

K3

)
− a3N3M3 − ν3N3 + α2N2 + α6N1 − (α3 + α5)N3

)
+(γ3N3M3 − µ3M3 − ν3M3)

The right-hand side of the equation is a sum of terms that include logistic growth terms which are self-limiting and ensure

prey growth does not exceed the carrying capacity Ki, negative interaction terms like −aiNiMi, representing predation

and reduce prey population when predator numbers increase, mortality and harvesting terms which continuously act to

reduce the population sizes, and migration terms which redistribute prey among patches without introducing unbounded

growth. The logistic terms inherently bound the prey population by their respective carrying capacities. The mortality

and harvesting terms act as sinks, further limiting unbounded growth. Predation introduces nonlinear decay effects,

ensuring that even in the presence of high prey numbers, predator pressure helps regulate population sizes. The predator

equations similarly contain death and harvesting terms that prevent unbounded growth.

Formalizing this by constructing a Lyapunov-like function,

V (t) =

3∑
i=1

(Ni(t) +Mi(t)) ,

and analyze its derivative,
dV

dt
≤ C −DV (t),

where C > 0 is a constant representing the maximum cumulative contribution from logistic and migration terms, and

D > 0 is a constant representing the decay effect due to mortality, harvesting, and predation. This inequality implies

that V (t) grows at a rate bounded above by a linear function that decreases in V , leading to the conclusion (by the

Comparison Theorem [6]) that;

V (t) ≤ max

(
V (0),

C

D

)
, for all t ≥ 0.

Hence, all individual population components Ni(t) and Mi(t) are bounded above by finite constants.
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3.3 Stability Analysis

A standard Stochastic Differential Equations (SDEs) takes the form;

dxi = fi(x)dt+ gi(x)dWi(t), i = 1, 2, 3, ..., n

where fi(x) captures deterministic dynamics, gi(x) incorporates stochastic effects, and Wi(t) are Wiener processes

representing the random fluctuations.

We can rewrite (1) in a general form as;

dNi = fi(N,M) dt+ gi(N,M) dWi(t), i = 1, 2, 3

dMi = hi(N,M) dt+ ki(N,M) dWi(t), i = 1, 2, 3

where fi(N,M) is the deterministic component of Ni, gi(N,M) is the stochastic component of Ni, hi(N,M) is the

deterministic component of Mi, ki(N,M) is the stochastic component of Mi, and dWi(t) represent the Wiener processes.

We define the Lyapunov function as;

V (N,M) =

3∑
i=1

(
N2

i

2
+

M2
i

2

)
.

which measures the “energy” or total population in the system.

Computing the partial derivatives of V (N,M), we have;

∂V

∂Ni
= Ni,

∂V

∂Mi
= Mi,

∂2V

∂N2
i

= 1,

∂2V

∂M2
i

= 1.

The first 2 equations (this applies to equations for dN2, dM2, dN3, dM3) of SDEs for equation (1) can be re-written as;

dN1 = f1(N,M) dt+ g1(N,M) dW1,

dM1 = h1(N,M) dt+ k1(N,M) dW1,

where;

f1(N,M) = r1N1

(
1− N1

K1

)
− a1N1M1 − ν1N1 + α4N2 − (α1 + α6)N1,

g1(N,M) = σ1N1,

h1(N,M) = γ1N1M1 − µ1M1 − ν1M1,

k1(N,M) = σ1M1.

Applying the Itô’s Lemma [22], the stochastic differential of V (N,M) becomes;
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dV =

3∑
i=1

(
∂V

∂Ni
dNi +

∂V

∂Mi
dMi

)
+

1

2

3∑
i=1

(
∂2V

∂N2
i

(dNi)
2 +

∂2V

∂M2
i

(dMi)
2

)
.

Substituting dNi = fi dt+ gi dWi and dMi = hi dt+ ki dWi, we have;

dV =

3∑
i=1

(Nifi +Mihi) dt+

3∑
i=1

(Nigi +Miki) dWi +
1

2

3∑
i=1

(
g2i + k2

i

)
dt.

where, Nifi and Mihi contribute to the deterministic drift term, Nigi and Miki are associated with the stochastic terms,

g2i + k2
i contribute to the second-order term.

Computing each term, we have that;

For i = 1(similar for i = 2 and i = 3;

f1(N,M) = r1N1

(
1− N1

K1

)
− a1N1M1 − ν1N1 + α4N2 − (α1 + α6)N1,

g1(N,M) = σ1N1,

h1(N,M) = γ1N1M1 − µ1M1 − ν1M1,

k1(N,M) = σ1M1.

The deterministic term in dV becomes;

N1f1 +M1h1 = N1

[
r1N1

(
1− N1

K1

)
− a1N1M1 − ν1N1 + α4N2 − (α1 + α6)N1

]
+M1 [γ1N1M1 − µ1M1 − ν1M1] .

The stochastic term in dV becomes;

N1g1 +M1k1 = N1(σ1N1) +M1(σ1M1).

The second-order term in dV becomes;

g21 + k2
1 = (σ1N1)

2 + (σ1M1)
2.

Therefore, the full equation for i = 1 is;

dV1 =

(
r1N

2
1 − r1N

3
1

K1
− a1N

2
1M1 − ν1N

2
1 + α4N1N2 − (α1 + α6)N

2
1 + γ1N1M

2
1 − µ1M

2
1 − ν1M

2
1

)

dt+
(
σ1N

2
1 + σ1M

2
1

)
dW1 +

1

2

(
σ2
1N

2
1 + σ2

1M
2
1

)
dt

For i = 2 and i = 3, with corresponding terms for f2, h2, g2, k2 and f3, h3, g3, k3, the general form can be represented as;

dV =

3∑
i=1

[
(Nifi +Mihi) dt+ (Nigi +Miki) dWi +

1

2

(
g2i + k2

i

)
dt

]
To ensure stochastic stability, the expected change in the Lyapunov function, V (N,M), should be negative;

E
[
dV

dt

]
=

3∑
i=1

[
Nifi +Mihi +

1

2
(g2i + k2

i )

]
< 0.

This is achieved when; drift terms dominate and are negative, harvesting rates νi and mortality rates µi are large enough,

noise intensities σi are not too large, and predator efficiency γi and prey growth ri are not excessively high.
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Numerical results

Following the analytic derivation of the Lyapunov function and the conditions for stochastic stability, we now present

numerical simulations to illustrate the system’s behavior under different parameter regimes.

The system was numerically simulated and the Lyapunov function (combined “energy” of all prey and predator populations)

computed as;

V (t) =

3∑
i=1

Ni(t)
2 +Mi(t)

2

2

To ensure stochastic stability, we need to show that V (t) remains bounded (decreases in expectation). Lyapunov Function,

LV < 0 ⇒ (ei − 1) < 0 ⇒ ei < 1

Figure 1: Lyapunov Function V(t) over Time when ei < 1.

In Figure 1, when ei < 1, V (t) stays bounded indicating stochastic stability. This implies that the model is resilient to

environmental noise and the populations tend to stabilize despite randomness.
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Figure 2: Lyapunov Function V(t) over Time when ei > 1.

In Figure 2, when ei > 1, V (t) grows without bound indicating that the system is unstable. This implies that low

harvesting rates or high noise intensity destabilize the system emphasizing the importance of harvesting and mortality

mechanisms in maintaining ecological equilibrium, especially under environmental uncertainty.

3.4 Numerical Simulation

To illustrate the dynamic behavior of the model under stochastic influences, we performed numerical simulations using

Python. The parameter values used are summarized in the table below:

Table 1: Parameter values
Parameter/Variable Description Value Source

ν1, ν2, ν3 Harvesting rates in patches 1–3 0.02 Estimated

K1,K2,K3 Carrying capacities in patches 1–3 10, 8, 6 Estimated

a1, a2, a3 Predation rates in patches 1–3 0.2, 0.3, 0.4 Estimated

r1, r2, r3 Prey growth rates in patches 1–3 0.5, 0.4, 0.3 [7]

µ1, µ2, µ3 Predator death rates in patches 1–3 0.1 [32]

γ1, γ2, γ3 Predator growth rates in patches 1–3 0.01 Estimated

σi Intensity of stochastic fluctuations, i = 1, 2, 3 Variable Estimated

α1 to α6 Prey migration rates between patches 0.03 Estimated

Stochastic analysis was carried out to understand how unbounded variations in the population influence fish population

dynamics in the three-patch ecosystem. Simulations were performed with varying noise intensities, and the resulting

population trajectories for N1,M1, N2,M2, N3,M3 are displayed below.
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Figure 3: Stochastic dynamics with noise intensities 0.1, 0.05, 0.15, 0.1, 0.2, 0.15 for the six fish

populations.

Figure 3 shows minimal oscillatory behavior across all populations, suggesting that the system experiences low influence

at the given noise intensities.

Figure 4: Stochastic dynamics with noise intensities 0.15, 0.1, 0.2, 0.15, 0.25, 0.2 for the six fish

populations.

In Figure 4, the fish populations exhibit moderate oscillations, indicating a greater impact of stochasticity on system

dynamics.
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Figure 5: Stochastic dynamics with noise intensities 0.45, 0.4, 0.5, 0.45, 0.55, 0.5 for the six fish

populations.

Figure 5 reveals more pronounced oscillations in all fish populations, reflecting increased sensitivity to environmental

noise.
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Figure 6: Stochastic dynamics with noise intensities 0.75, 0.8, 0.85, 0.75, 0.9, 0.85 for the six fish

populations.

In Figure 6, strong and highly oscillatory patterns are evident, indicating high stochastic influence and dynamic instability

in the ecosystem under such intense environmental variation.

4 Discussion

This study set out to develop and analyze a stochastic predator-prey model within a three-patch aquatic ecosystem using

systems of stochastic differential equations (SDEs). The model incorporated ecological assumptions including logistic prey

growth, distinct population dynamics per cage, and constant migration of prey fingerlings between patches. Migration

rates were defined to reflect directional movement between patches, while unbounded variations in the population was

captured through white noise terms acting on both prey and predator populations. Using the stochastic Lyapunov

function method, the analysis revealed that system stability is significantly influenced by predator efficiency. When

the efficiency parameter ei < 1, the total population V (t) remains bounded over time, indicating stochastic stability.

Conversely, when ei > 1, the population exhibits unbounded growth, signaling system instability.

Numerical simulations conducted in Python supported the analytical findings and demonstrated how varying noise

intensities, harvesting rates, and migration patterns affect system behavior. At low harvesting rates (ν1 = ν2 = ν3 =

0.02) and moderate noise intensities (σ between 0.10 and 0.90), prey populations remained viable and relatively stable.

However, higher noise levels or excessive harvesting led to increased oscillations and a greater risk of population decline

or extinction. These findings highlight the importance of carefully managing both environmental variability and resource

extraction practices. The model provides useful insights for designing sustainable harvesting strategies and improving

ecological resilience in spatially structured aquatic systems.
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