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ABSTRACT

Rainfall patterns play a critical role in shaping various aspects of our lives. Understanding
the patterns, trends and predictability of rainfall is essential for effective planning and
decision making in various aspects including agriculture, water resource management,
disaster preparedness and social economic planning. In agricultural activities crops
require specific amount of water at the right time for growth. By understanding the
rainfall patterns, farmers can adapt their farming activities, optimizing irrigation strategies
and make informed decisions. In the management, it help policy makers and management
authorities for planning efficient water allocations and conservations measures. Therefore,
in this paper we fit a time series model that best describes rainfall patterns of Kakamega
county for the general ARIMA and generated the values of (P, D, Q) to forecast average
expected monthly rainfall. Also we use R software for verification and data fitting of
the model. The data we have used is from the Kakamega meteorological station in
Kakamega.
Mathematics Subject Classification: Primary 55M10; Secondary 91G80
Keywords: Rainfall patterns, predictability, optimizing irrigation,
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1 Introduction
The rainfall variability has been affected by a combination of natural and human factors. Therefore, in
understanding these key factors is crucial for comprehending variations in rainfall patterns. Some of the
factors includes climate change, topography and orographic effects, atmospheric circulation, vegetation
and land use changes, human activities etc [16]. In climate change, the rising global tempratures alter
atmospheric circulations patterns, leading to changes in the precipitation patterns [13]. This has been
resulting in shifts in rainfall distribution intensity and frequency leading to more frequent droughts or
intense rainfall events. Under Topography, the mountains and elevated terrain can trigger orographic
uplift causing moist air to rise and cool leading to enhanced rainfall on the windward sides of the
mountains. Conversely leeward side experiences a rainshadow effect resulting in reduced rainfall [5].
The human activities like irrigation and urbanization can modify local and regional rainfall patterns
for instance increasing moisture availability leading to localized changes in rainfall. Also changes
in land cover due to urbanization can affect rainfall patterns by altering the surface characteristics
[17]. Therefore, in understanding these factors and interactions is crucial for accurately predicting and
managing rainfall variations especially in the context of climate change and sustainable water resource
management.

2 Literature Review
Most of the economies both in Kenya and Africa countries heavily relied on rain for agriculture. In Kenya,
agriculture contributes 0.33 of the GDP, generates 0.6 foreign exchange earnings, provides employment
to over 40 percent of the population and 70 percent of the rural population, provides raw materials to
agro-industries [2]. Livestock contributes 42 percent of agricultural GDP and 12 percent of the total GDP
[19]. Kakamega county lies in the western part of Kenya. There are mostly farmers growing Sugarcane,
Maize, Beans, and Tea. Rainfall variability phenomenon in terms of the temporal aspects is the degrees
to which rainfall amounts to changes at a given area through time, either month to month of, and season
to season or year to year in relation to long term average [14]. The studies by [18] associate rainfall
variability with floods, dry spell or drought. Similarly, rainfall variability can be identified as having a
global effect on agricultural crop production [8]. The historical change in rainfall amounts at a seasonal
and annual scales is an important variable in examining rainfall variability [4] and annual amounts in
agricultural production. [11] indicates that most African economies are highly dependent on agriculture
and adoption of modern technology is low, leading to poor agricultural crops returns. The studies by
[7] link the local short rains to reduced crop yields despite the fact that increased rainfall amounts is
always associated with high yields. A study by [6] shows that rainfall in Mumias Subcounty varies from
season to season or year to year such that, between 1982 and 2012 the subcounty experienced an
increase annual amount which had an effect on Sugarcane production. Under the production, by the
line graph, it showed variability trend at seasonal scale which was positive for long rains (slope=2.52)
and seasonal and annual rainfall were found were found to be 83.17 percent and 67.7 respectively
implying a high level of temporal rainfall variability. In addition, the Kakamega climate risk profile shows
the analysis over 35 years period (1981-2015) indicates that average rainfall had increased by over 15
percent in the first season and 30 percent in second season [3]. However, rainfall variability from year
to year has also increased resulting in an increased risk and uncertainty of occurrence of floods and
droughts. Both hazards have an increased impacts on agricultural production and livelihoods of the
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country inhabitants. According to [12] on climate change and seasonal agricultural drought, a simple
Random Sampling (SRS) method has been used and SPSS software has been employed in analysis.
The results showed that there was an evidence of climate change and seasonal agricultural drought
in Kakamega South Subcounty where the study was employed [10]. Therefore it was recommended
that in order to adapt to effects to climate change, there’s was need to improve sustainability of crop
production by supplementing rain fed farming with drip irrigation, rainwater gathering and greenhouse
techniques. Methods of prediction of rainfall extremes have often been based on studies of physical
effects of rainfall or on statistical studies of rainfall time series. Because rainfall occurs based on a
specific time and there is a correlation between the previous data and subsequent ones, the best method
for analysing rainfall data is using time series [18] revealing that a researcher with data for a past period
can use Univariate Box-Jenkins method to forecast values without having to search for other related
time series data. Montgomery and Johnson [13] considered the Box and Jenkins methodology the most
accurate method for forecasting of time series. [9] in studying of drought, modelling and forecasting the
precipitation of the Shiraz city of Iran, used three models; Box-Jenkins, Decomposition and Heat Winterz
on precipitation for the period 1977 to 2010 [15]. The Box Jenkins approach was chosen as the most
appropriate method for forecasting. [7] carried out a statistical analysis of rainfall pattern in Dire Dawa,
Eastern Ethiopia. He used descriptive analysis, spectrum analysis, and univariate Box Jenkins method.
He established a time series model that he used to forecast two years monthly rainfall.

3 Research Methods

3.1 The Moving Average (MA) model
Given:

xt = a0ut + a1ut−1 + ...+ aqut−q (3.1)

Where ut is a random process with mean zero and variance σ2. We say that equation [1] is a Moving
Average (MA) process of order q, commonly denoted as MA (q). CPI is the Consumer Price Index in
Kenya at time t, a0 . . . aq are estimation parameters, ut is the current error term while ut−1 . . . ut−q are
previous error terms. Hence:

xt = a0u0 + a1ut−1 (3.2)

is an MA process of order one, commonly denoted as MA (1). Owing to the fact that previous error terms
are unobserved variables, we then scale them such that a0=1. Since:
E(ut)=0
for all t,it therefore; implies that:
E(CPIt)=0
and

V ar(xt) = (

q∑
i=0

a2t )σ
2 (3.3)

where ut is independent with a common varience σ2 . Hence, we can now re – specify general equation
as follows:

xt = ut + a1ut−1 + ...+ aqut−q (3.4)
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3.2 The Autoregressive (AR) model
Given:

xt = β1xt−1 + ...+ βpxt−p + ut (3.5)

Where β1 . . . βp are estimation parameters, xt−1 . . . xt−p are previous period values of the data series
and ut is as previously defined. We say that equation is an Autoregressive (AR)process of order p, and
is commonly denoted as AR (p); and can also be written as:

xt =

p∑
i=1

βt−ixt−i + ut (3.6)

3.3 The Autoregressive Integrated Moving Average (ARIMA) model
ARIMA models are a set of models that describe the process (for example, xt) as a function of its own
lags and white noise process [1]. Making predicting in time series using univariate approach is best done
by employing the ARIMA models (Alnaa and Ahiakpor, 2011). A stochastic process xt is referred to as
an Autoregressive Integrated Moving Average (ARIMA) [p, d, q] process if it is integrated of order “d”
[I (d)] and the “d” times differenced process has an ARMA (p, q) representation. If the sequence △dxt

satisfies and ARMA (p, q) process; then the sequence of xt also satisfies the ARIMA (p, d, q) process
such that:

△dxt =

p∑
i=1

βt−i△dxt−i +

q∑
i=1

aiut−i + ut (3.7)

where △ is the difference operator.

3.3.1 Model Selection Criteria:

The parameters p,d and q can be obtained through:

1. parameter p will obtained in AR by looking at Autocorrelation Function (ACF) plot and choosing
the lag where it crosses the significance threshold.

2. parameter d will be obtained by determining the number of differences needed to achieve the
stationary.

3. parameter q will be obtained by looking at Partial Autocorrelation Function (PACF) plot and
choosing the lag where it crosses the significance threshold.

The final model was selected using a penalty function statistics such as Akaike Information Criterion (AIC
or AICc) or Bayesian Information Criterion (BIC). (Sakamoto, Ishinguro, and Kitagawa, 1986);(Akaike,
1974) and (Schwarz, 1978). The AIC, AICc and BIC are a measure of the goodness of fit of an estimated
statistical model. Given a data set, several competing models may be ranked according to their AIC,
AICc or BIC with the one having the lowest information criterion value being the best. These information
criterion judges a model by how close its fitted values tend to be to the true values, in terms of a certain
expected value. The criterion attempts to find the model that best explains the data with a minimum of
free parameters but also includes a penalty that is an increasing function of the number of estimated
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parameters. Also some forecast accuracy test between the competing models can also help in making
a decision on which model is the best. Minimum of free parameters but also includes a penalty that is
an increasing function of the number of estimated parameters. This penalty discourages over fitting. In
the general case, the AIC, AICc and BIC take the form as shown below:

AIC=2k - n log(RSS
n )

AICc=AIC + 2k(k+1)
n−k−1

BIC=log(σ2
e) + k

n log(n)

Where
k: is the number of parameters in the statistical model

RSS: is the Residual Sum Squares for the estimated model

n : is the number of observations

σ2
e : is the error variance

3.3.2 The Box – Jenkins Methods

The first step towards model selection was to difference the series in order to achieve stationarity. Once
the process was over,we then examine the correlogram in order to decide on the appropriate orders
of the AR and MA components. It was important to highlight the fact that this procedure (of choosing
the AR and MA components) is biased towards the use of personal judgement because there was no
clear – cut rules on how to decide on the appropriate AR and MA components. Therefore, experience
plays a pivotal role in this regard. The next step is the estimation of the tentative model, after which
diagnostic testing followed. Diagnostic checking usually done by generating the set of residuals and
testing whether they satisfy the characteristics of awhite noise process. If not, there would be need
for model re – specification and repetition of the same process; this time from the second stage. The
process may go on and on until an appropriate model is identified
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4 Results

4.1 Data analysis
In this chapter we analyzed the data collected from Kakamega meteorological station to predict the
rainfall pattern in Kakamega County. As shown in table above, the mean is positive. The skewness was

Descriptive Statistic
Mean 2.967

Standard deviation 0.5902
variance 0.348

Skewness 0.373
Kurtosis 3.412

0.373 and the most striking feature was positive, implied that the data series was non – symmetric, for
kurtosis was that it should be around 3 for normally distributed variables and in this analysis, kurtosis
was found to be 3.412 Therefore, the data series implied that it is normally distributed. As shown in the

Figure 1:

figure above, rainfall is higher on second quarter which is on april may and june thus mostly farming
should be done during the period. Stationarity Tests: Graphical Analysis
We examined whether a series was stationary or not by analyzing the time plot of average rainfall against
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year. In that regard, a time plot of the data series is shown below:
The graph below shows that the data is not stationary since it is varying over the period under study.
The implication is that the mean of data is changing over time and hence we can safely conclude that
the variance of data is not constant over time.

Figure 2:

The Correlogram
Autocorrelation Function (ACF) The ACF measures the correlation between a series and its lagged
values. For non-stationary data, you may observe a gradual decline in the ACF plot, indicating that past
values are still correlated with the current values but the correlation decreases as the lag increases. This
suggested a lack of stationarity in the data, as the relationship between observations changed over time.

Partial Autocorrelation Function (PACF) The PACF shows the correlation between two variables
while controlling for the effects of other variables in between. In non-stationary data, the PACF may
exhibit spikes at the initial lags, indicating strong correlations that decay rapidly. This suggests that each
observation may have a strong direct influence on subsequent observations, which is characteristic of
non-stationary processes.
As shown in figure below, these patterns indicates the persistence of correlations over time and the lack
of stable relationships between observations, both of which are indicative of non-stationarity.
Thus, the need for further analysis or data transformation techniques to address the non-stationarity
before modeling or forecasting.

The ADF Test
The Augmented Dickey Fuller (ADF test) was used to check the stationarity of the data.
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Figure 3:

The Augmented Dickey-Fuller (ADF) test was conducted to assess the stationarity of the data. The
test statistic was found to be -3.5298, which exceeds the critical values at the 5% significance level.
Additionally, the p-value associated with the test was 0.05439, which is greater than 0.05 therefore, we
failed to reject the null hypothesis of non-stationarity, indicating that the data was non-stationary.

1st Difference
The graph below shows a stationary series of data values after applying first differencing. Stationarity is
evident from the absence of a clear trend or pattern over time. Fluctuations appear to be random around
a constant mean level. Graphical Analysis

The stationary nature of the averange rainfall data series after first differencing indicates that the
data is now suitable for time series analysis, such as forecasting or modeling. The absence of a
trend suggests that inflationary or deflationary pressures may have stabilized during the period under
consideration.
ADF test
The Augmented Dickey-Fuller (ADF) test was conducted to assess the stationarity of the data after first
differencing. The test statistic was found to be -4.5195, which is more negative at the 5% significance
level. Additionally, the p-value associated with the test was 0.01, which is less than 0.05. Therefore,
reject the null hypothesis of non-stationarity, indicating that the data is stationary.
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Figure 4:

4.2 Evaluation of various ARIMA models
In this study, we aimed to evaluate the ARIMA(p,1,q) model for a rainfall dataset. We first fited the
model to historical rainfall data, tuned the model parameters ’p’ and ’q’, and then assess the model’s
performance using AIC and BIC and forecast accuracy.
By comparing AIC and BIC values across different ARIMA(p,1,q) models, we aim to identify the optimal
combination of autoregressive and moving average terms that effectively capture the underlying inflation
dynamics. Lower AIC and BIC values indicate better fitting models, with preference given to models that
strike a balance between explanatory power and simplicity. As shown in the table above, the ARIMA

Model AIC BIC
ARIMA(1,1,0) 77.667 80.777
ARIMA(0,1,0) 86.5473 88.1026
ARIMA(2,1,0) 78.6536 83.497
ARIMA(0,1,3) 73.786 80.007
ARIMA(1,1,4) 76.67 86.001
ARIMA(1,1,3) 74.955 82.732
ARIMA(1,1,1) 71.924 76.59
ARIMA(3,1,1) 74.24 82.014

(1, 1, 1) model has the lowest AIC value and again it has the lowest BIC value making it to be the best
model.
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Figure 5:

4.3 Stability Test of the ARIMA (1, 1, 1) Model
In this context, examining the stability of the ARIMA(1,1,1) model with a unit polynomial becomes
particularly important. Stability here refers to the model’s ability to maintain consistent behavior over
time and across different conditions. Specifically, it entails ensuring that the model’s parameters remain
within reasonable bounds and that the model produces reliable forecasts that align with observed data.

The unit polynomial in the ARIMA(1,1,1) model implies that the original time series has undergone
differencing to remove trends or non-stationarity. This transformation is crucial for making the data
suitable for modeling using ARIMA techniques. However, it also introduces potential challenges related
to stability, as differencing can sometimes amplify noise or introduce unwanted artifacts into the series.
The figure above indicates that the ARIMA (1, 1, 1) model is also stable since the corresponding inverse

root of the characteristic polynomial is in the unit circle.

4.4 Findings and Discussion

Variable Coefficient Standard error z p¿(z)
AR(1) [β1] -0.0537 0.1964 -2.91 0.0000
MA(1) [α1] -1 0.1113 -5.09 0.0000
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Figure 6:

4.4.1 Interpretation

After analyzing the data, we found that there was significant difference of the amount of rainfall in different
periods of a year. Interpretation: The results of study indicate that there was relatively low amount of
rainfall for the first quartile of the year and then from April to June there was relatively increase in rainfall
and then from July there was slight drop of the amount of rainfall as compared to the second quartile but
relatively higher than the first quartile, in the last quartile there was moderate amount of rainfall.

4.4.2 Implications

1. The findings suggested that the farmers should choose drought resistance crop varieties that
require less water and are well adapted to dry conditions in first quartile and the last quartile.

2. The farmers were encouraged to implement efficient water management techniques such as drip
irrigation to optimize the use of available water resources and minimize water wastage.

3. we encouraged the farmers to adjust on planting schedule to coincide with periods of expected
rainfall.

4.4.3 Forecast Graphs

The forecast graph generated by an ARIMA(1,1,1) model for rainfall over the next five years, starting
from 2023, offers a comprehensive insight into the anticipated trends and patterns in precipitation. This
graphical representation encapsulates a wealth of information crucial for understanding and planning for
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future conditions.
Displayed along the x-axis is the timeline, spanning from 2023 to the end of the forecast period five
years later. On the y-axis, the predicted rainfall values are depicted, providing a projection of expected
precipitation amounts for each corresponding time point.
As indicated on the graph, rainfall amount might remain constant over period of time with slightly variation

Figure 7:
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5 Conclusion and Recommendation

5.1 Conclusion
In conclusion, this paper provided valuable insights into the rainfall pattern of Kakamega County through
vigorous analysis, we had uncovered the best period for farming practices. These findings had significant
implications for farmers. However, it was important to acknowledge the limitations of the study such as:

1. Nonstationarity -that made it difficult to predict future outcomes because past patterns could not
continue to hold and makes modelling complex.

2. Missing values -that lead to loss of information potentially lead to an incomplete understanding of
the underline phenomenal studied.

3. The package used to analyze -some R studio plug in were not compatible with R software that
made analysis complex and time consuming.

Future research could explore machine learning algorithms for more accurate predictions and exploring
the impact of urbanization and land-used changes on local rainfall pattern.
Recommendations

1. Develop machine learning algorithm to improve the accuracy rainfall predictions.

2. Investigate long-term trends in rainfall variability over different time space.

3. Implement community-based rainfall monitoring initiatives to collect local data to mitigate the
impacts of changing rainfall pattern.
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