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ABSTRACT

We determine some important spaces of ideal operators and ideal characteristics. Special consideration
is given to Frechet spaces, Spaces of finite rank operators and spaces of Hahn-Banach extension operators.
The characteristics of ideals and related properties in these spaces as well as in some of their dual spaces
are obtained.
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1 Introduction

The study of Abrahamsen et al[1] on unconditional ideals of finite rank operators gave characterizations of when F (Y,X)
is a u-ideal in W (Y,X) for every Banach spaces X and Y in terms of nets of finite rank operators approximating weakly
compact operators. Similar characterizations were given for the cases when F (Y,X) is a u-ideal inW (Y,X) for every Banach
space Y , when F (Y,X) is a u-ideal in W (Y,X) for every Banach space Y and when F (Y,X) is a u-ideal in K(Y,X) for
every Banach space Y . Abrahamnsen et al[2] defined and studied λ-strict ideals in Banach spaces in which for λ = 1 means
strict ideals. Strict u-ideals in their biduals are known to have the unique ideal property and the study in [2] revealed that
the λ-strict u-ideals also have unique properties in their biduals, at least for λ > 1/2.

Lima et al [13] on the Geometry of operator spaces considered bounded approximation properties via nuclear and integral
operators. Starting with a Banach spaceX and a Banach operator A, they determined the λ bounded approximation property
for A ( λ − BAP for A ) and showed that for every Banach space Y and every Operator T ∈ A(X,Y ), there exists a net
(Sα) of finite rank operators on X such that Sα → IX uniformly on compact subsets of X and lim sup ∥TSα∥A ≤ λ∥T∥A.
They further proved that the weak λ-BAP is precisely the λ-BAP for the ideal N of nuclear operators. Lima [11] conducted
a study on the metric approximation properties in Banach spaces where it was shown that if a Banach space Y is a u-ideal
in its bidual Y ∗∗ with respect to the canonical projection on the third dual Y ∗∗∗, then Y ∗ contains ”many” functionals
admitting a unique norm-preserving extension to Y ∗∗ and the dual unit ball BY ∗ is the norm-closed convex hull of its weak
∗ strongly exposed points. Consequently, Martsinkevits and Poldvere[17] in their study on the structure of the dual unit
ball of strict u− ideals showed that if Y is a strict u-ideal in a Banach space X with respect to an ideal projection P on

Licensed Under Creative Commons Attribution (CC BY-NC)

85



Vol 3 (Iss.1), pp.85-101, 2023 Science Mundi ISSN: 2788-5844 http://sciencemundi.net

X∗, and X/Y is separable, then BY ∗(X) is the τP closed convex hull of functionals admitting a unique norm-preserving
extension to X, where τP is a certain weak topology on Y ∗ defined by the ideal projection P . A question that arises still
is: if X is a Banach space which is a strict u-ideal in it bidual and Y any separable subspace of X, then is Y a strict u-ideal
in its bidual?, and is X separably determined?. Our study provides a partial solution to this question.

Lima et al[9] developed a Compact Approximation Theory where they showed that a Banach spaces X has the compact
approximation property if and only if for every Banach space Y and every weakly compact operator T : Y → X, the space
S = {S ◦ T : S is a compact operator on X } is an ideal in J = span(S, {T}) if and only if for every Banach space Y and
every weakly compact operator T : Y → X, there is a net (Sγ) of compact operators on X such that supγ ∥SγT∥ ≤ ∥T∥ in
the strong operator topology. Similar results for dual spaces were also shown. Now, let X ⊆ Y be Banach spaces and let
A ⊆ B be closed operator ideals. Let Z be a Banach space having the Radon-Nikod’ym property. Lima, and Oja[13] showed
that if Φ : A(Z,X)∗ → B(Z, Y )∗ is a Hahn-Banach extension operator, then there exists a set of Hahn-Banach extension

operators ϕi : X∗ → Y ∗i i ∈ I, such that Z =
∑
i∈I

⊕iZΦϕi , where ZΦϕi = {z ∈ Z : Φ (x∗ ⊗ z) = (ϕix
∗)⊗ z, x∗ ∈ X∗}.

Further if B(Z, Ŷ ) is an ideal in B(Ẑ, Y ) for all equivalently renormed versions Ẑ of Z, then there exist Hahn-Banach
extension operators Φ : A(Z,X)∗ → B(Z, Y )∗ and Φ : X∗ → Y ∗ such that Z = ZΦϕ.

Hamard and Lima [7] investigated Banach spaces X such that X is anM -ideal in X∗∗. Subspaces, quotients and c0-sums
of spaces which are M -ideals in their biduals are again of this type. A non-reflexive space X which is an M -ideal in X∗∗

contains a copy of c0. In their study, they showed that if K(X) is an M -ideal in L(X) then X is an M -ideal in X∗∗. Also,
if X is reflexive and K(X) is an M -ideal in L(X), then K(X)∗∗ is isometric to L(X), that is, K(X) is an M -ideal in its
bidual. Moreover, for real such spaces, K(X) contains a proper M -ideal if and only if X or X∗ contains a proper M -ideal.
The proofs of these results are based upon the fact that X is an M -ideal in X∗∗ if and only if the natural projection from
X∗∗∗ onto X∗ is an L-projection. Using local reflexivity it is shown that if X is an M -ideal in X∗∗ and X is non-reflexive,
then X contains almost isometric copies of c0. From this it follows that subspaces and quotients are isomorphic to dual
spaces are reflexive.

Lima [10] studied strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical
decomposition X∗∗∗ = X∗ ⊕X⊥ is unconditional. In characterizing Banach spaces which are strict u-ideals in their bidual
it is shown that if X is a strict u-ideal in a Banach space Y then X contains c0. It is also shown that ℓ∞ is not a u-ideal.
Let X be a subspace of a Banach space Y , X is said to be a summand of Y if it is the range of a contractive projection and
that X is an ideal in Y if X⊥ is the kernel of a contractive projection on Y ∗.

A norm one operator ϕ : X∗ → Y ∗ such that ϕ (x∗) (x) = x∗(x) is said to be a Hahn-Banach extension operator. The
set of all such ϕ is denoted by B(X,Y ). For every ϕ ∈ B(X,Y ) we have

Y ∗ = X⊥ ⊕ ϕ (X∗)

Let iX be the natural embedding iX : X → Y. Pϕ = ϕ ◦ i∗X is a norm one projection on Y ∗ with kerP = X⊥. X is an ideal
in Y if and only if B(X,Y ) ̸= ∅ (see [9 If

∥∥x⊥ + ϕ (x∗)
∥∥ =

∥∥x⊥ − ϕ (x∗)
∥∥ for all x⊥ ∈ X⊥ and x∗ ∈ X∗ then X is a u-ideal

in Y and that ϕ is unconditional. ϕ is unconditional if and only if ∥I − 2Pϕ∥ = 1 which gives a well-known notion of an
M -ideal [5, 8] if

∥∥x⊥ + ϕ (x∗)
∥∥ =

∥∥x⊥∥∥+ ∥ϕ (x∗)∥ for all x⊥ ∈ X⊥ and x∗ ∈ X∗.

The operator space structures and the the Algebra of Ideals/Modules has progressively impacted on various findings.
Some more elaborate details regarding this subject can be found in among other references ([16][14][21][19] [4]) and most
recently [20]. Mathews[16] investigated algebraic questions about the structure of B(E) and ideals thereof, where B(E) is the
Banach algebra of all operators on a Banach space E. The study showed that there exist many examples of reflexive Banach
spaces E such that B(E) is not Arens regular. In the Banach Algebra setting, the study determined classes of modules in
a C∗− algebra that admit the Arens’s product. The approximate properties, the nuclear operators and integral properties
of such modules were determined. Linus[14] studied the Ideals and Boundaries in Algebras of Holomorphic Functions. In
particular, the study investigated the spectrum of certain Banach algebras. Properties like generators of maximal ideals and
generalized Shilov boundaries are studied. In particular it was shown that if the δ−equation has solutions in the algebra
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of bounded functions or continuous functions up to the boundary of a domain D ⊂⊂ Cn then every maximal ideal over
D is generated by the coordinate functions. This implies that the fibres over D in the spectrum are trivial and that the
projection on Cn of the n− 1 order generalized Shilov boundary is contained in the boundary of D. The complex analytic
theory propagated was used in the determination of the generators of functional algebras in manifolds.

The M−embedments, ones sided structures, multipliers and related theories of r− ideals and l−ideals were developed
by Sonia[21]. The main idea here was to enrich the non-commutative attributes and a generalization of ideal structures
to specified operator spaces. Recently, Bence[4] developed the clarity of Algebras of operators on Banach spaces, and
homomorphisms thereof. The study was devoted to the homomorphisms and perturbations of homomorphisms of such
algebras with a keen focus on perturbations of homomorphisms between Banach algebras. Indeed, the Finiteness and stable
rank of algebras of operators on Banach spaces were determined. The results of the study showed that it is possible to develop
a unified Theory of maps and functors over modules. Using the methods proposed by Bence[4], Saeid[20] characterized the
properties of λ−continuous functions in vector valued topological spaces. This justifies the consistent development of the
the Theory of Maps with respect to the hereditary algebras in Frechet spaces. In fact, Rahul’s study in [18] on the study of
some classes of operator spaces considers two classes of operators on Banach spaces. One is the class of local isometries and
the second is the class of projections which are related to isometries. The isometries guarantee the preservations of local
angles and distances while projections guarantee the existence of operator ideals and modules in the general setting.

2 Frechet Space of Operator Ideals

The notions in both Hilbert and Banach spaces can be generalized if a Frechet space say F is taken an ambient space.
Therefore, this section considers the ideal properties in the Frechet spaces with respect to the approximate identities,
density and smoothness. Bounded approximate identity is a key concept in the theory of amenability of algebras. We show
that algebra of compact operators on Frechet space X has both the right and left locally bounded approximate identities.
Sufficient conditions for the existence of these identities are established based on the geometry properties of the Frechet
space X and its dual space X∗ respectively.

A topological linear space X is referred to as a lcs if it has a local neighbourhood base comprising convex sets. The lcs X
is referred to as reflexive if it coincides with the continuous dual of its continuous dual space, that is X = X∗. A lcs is called
a metrizable lcs if it possesses countable local neighbourhood base. A Frechet space X is a complete, metrizable lcs. Its
notions therefore generalize Banach space and Hilbert spaces. Any algebra A equipped with a structure of lcs with respect
to which the product is separately continuous is a topological algebra[3]. So, a Frechet algebra is a complete topological
algebra of which an increasing countable collection {pi; i ∈ N} of sub-multiplicative continuous semi-norms determines its
topology. A Frechet algebra A is called amenable if given an A−bimodule Y , every continuous derivation from A to the
dual bimodule Y ∗ is inner.
Given lcs X and Y . Let T : X → Y be a linear operator. Then, T : X → Y is called bounded if for some neighbourhood
U in X, T (U) is bounded in Y and the operator ideal U(X;Y ) is closed if U = Ū .
A space X is said to have an unconditional partition of the identity (UPI) if for a sequence {Tn}n of continuous linear
operators Tn : X → X we have dimTn(X) finite and

∑
i Tis, where convergence is unconditional, s ∈ X.

The next results then follow:

Proposition 2.1. Suppose X∗ is the dual of a Frechet space X, there exists a bijection between operators on X∗ and the
strict inductive limit of the inductive system of continuous linear operators of Banach spaces.

Proof. Let i, j ∈ I such that j ≥ i, we define a map fij : Xi −→ Xj such that Ui ⊂ Uj where Ui and Uj are 0-neighbourhoods
in Xi and Xj respectively and fij is continuous with {Xi}i being family of Banach spaces. Hence, we identify X∗ as the strict
direct limit of sequence of Banach spaces {Xi}. That is X∗ = lim −→ Xi =

⋃
Xi = X∗ (i = 1, 2, . . .) with fij ◦ fjk = fik

satisfied for j ≥ i, k ≥ j.X∗ is endowed with strict inductive limit topology where fi : Xi −→ X∗ is continuous such that
fi (si) = s∗ and fij (si) = sj . Hence, X∗ is a complete lcs. We identify X∗ as the dual of a Frechet space X. Moreover,
given i ∈ I. Let Ti : D (Ti) ⊂ Xi −→ Xi. {Ti : i ∈ I} can be seen as an inductive system of operators in such a way that for
si ∈ D (Ti) ⊂ Xi and i > j.

Ti (fji (sj)) = fji (Tj (sj)) .
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We then define T ∗ as the inductive limit of the inductive system {D (Ti) : i ∈ I} using T ∗ (s∗) = fi (Ti (si)) or f
−1
i (T ∗ (s∗)) =

Ti

(
f−1
i (s∗)

)
where s∗ ∈ D (X∗) with i ∈ I. Therefore, we refer to T ∗ as the direct limit of {Ti : i ∈ I}. We have that T ∗

is a linear operator. Hence, for each i, Ti ∈ L (Xi), there exists T ∗ ∈ LI (X
∗). In the sequel, we finally have the following

relation. T ∈ LI (lim←−Xi) = LI(X) and T ∗ LI (lim−→Xi) = LI (X
∗).

Proposition 2.2. Suppose X and Y are Frechet spaces where X0 and Y0 are subspaces of X and Y respectively. Let X
be quasi normable and Y be reflexive. If R ∈ LI (X0, X) ⊆ L (X0, X) and S ∈ MI (Y, Y0) ⊆ L (Y, Y0), then the algebra of
compact operators KI(X,Y ) is an ideal in LI(X,Y ).

Proof. Suppose R ∈ LI (X0, X) , S ∈ MI (Y, Y0) and T ∈ KI(X,Y ). We need to show that KI(X,Y ) is an ideal. Since
KI(X,Y ) ⊆ LI(X,Y ), it is not empty. By definition, there exists some neighbourhood U0 ⊂ X0 and a bounded subset
B ⊂ X such that

RU0 ⊂ B (2.1)

Since X is quasi normable, there are 0-neighbourhoods U and V with V ⊂ U such that for every ϵ > 0 we have
V ⊂ B + ϵU . Hence, by definition there exists a compact set W ⊂ Y where TV is relatively compact in Y . That is

TV ⊂W (2.2)

Lastly, since Y is reflexive, the relatively compact set TV is a bounded set in Y . Hence, there exists by definition a
compact set G ⊂ Y0 where S(TV ) is relatively compact in Y0. That is

S(TV ) ⊂ G (2.3)

From relations (4.1) and (4.2), RU0 ⊂ B + ϵU . Hence,

T (RU0) ⊂W (2.4)

From relations (4.3) and (4.4), since T (RU0) is relatively compact, which implies that it is bounded in a reflexive Frechet
space Y . Hence,

ST (RU0) ⊂ G.

This implies that STR ∈ KI (X0, Y0). Therefore, KI(X,Y ) is an ideal.

Proposition 2.3. Suppose X is a Frechet space. An UPI for X implies an UPI for X∗.

Proof. Let a Frechet spaceX has UPI. That is, for a continuous linear sequence of operators {T}i ⊂ LI(X) with dim (Ti(s)) <
∞ and i ∈ N, we have

∑n
i Ti(s) = s. Let si converge to s weakly in X. Then, we have∑

i

Ti (si − s) =
∑
i

(Tisi − Tis) −→ 0.

Therefore, for all k there exists j and c > 0 such that∑
i

pk (Ti (si − s)) ≤ cpj (si − s)

Therefore,

|cpj (si)− cpj(s)| ≥

∣∣∣∣∣∑
i

pk (Ti (si))−
∑
i

pk (Ti(s))

∣∣∣∣∣
≤
∑
i

pk (Ti (si − s)) ≤ cpj (si − s) ,
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Hence, ∣∣∣∣∣∑
i

pk (Ti (si))−
∑
i

pk (Ti(s))

∣∣∣∣∣ ≤ cpj (si − s) .

Then for λ ∈ X∗, s ∈ X we have

|cp∗k(λ)pj (si)| − |cp∗k(λ)pj(s)| ≥
∑
i

| λ

(
Ti(si)| −

∑
i

|λ

(
Ti(s)

∣∣∣∣∣≤∑
i

∣∣∣∣∣λ (Ti (si − s))

≤ cp∗k(λ)pj (si − s)

That is ∑
i

|λ (Ti (si))| −

∣∣∣∣∣λ∑
i

Ti(s)

∣∣∣∣∣ ≤ cp∗k(λ)pj (si − s) .

Since the summation is over i and also since X has UPI, i.e.
∑

i Tis = s, we then have∑
i

| λ (Ti (si)) | − |λ
∑
i

Ti(s) |≤ cp′k(λ)pj (si − s)

then, ∑
i

|λ (Ti (si))| − |λ(s)| ≤ cp∗k(λ)pj (si − s) (2.5)

Let define an operator T ∗i : X∗ → X∗ such that T ′i (λsi) = λ (Ti (si)) where λ ∈ X∗. (4.5) now becomes∑
i

|T ∗i (λsi)| − |λ(s)| ≤ cp∗k(λ)pj (si − s)

=⇒ |cp∗k(λ)pj (si)| − |cp∗k(λ)pj(s)| ≥
∑
i

|T ∗i (λsi)| − |λ(s)|

≤

∣∣∣∣∣∑
i

T ∗i (λsi)− λ(s)

∣∣∣∣∣ ≤ cp∗k(λ)pj (si − s) .

This implies that ∣∣∣∣∣∑
i

T ∗i (λsi)− λ(s)

∣∣∣∣∣ ≤ cp∗k(λ)pj (si)

Let ϵ = max (m, cp∗k(λ)pj (si)) for m > 0

∴

∣∣∣∣∣∑
i

T ∗i (λsi)− λ(s)

∣∣∣∣∣ ≤ ϵ

Hence, it implies that ∑
i

T ∗i (λsi)− λs −→ 0

For s ∈ X, we have ∑
i

T ∗i (λs)− λs = 0

that is, ∑
i

T ∗i (λs) = λs for λ(s) ∈ X∗.

Therefore X∗ has an UPI.
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Next, we restrict our attention to the separable Banach space setting and investigate certain approximations.
Let X be a separable Banach space. We say that a sequence of compact operators Kn : X → X is a compact

approximating sequence if limn→∞Knx = x for every x ∈ X. So (Kn) , n ∈ N is an approximating sequence if each Kn

is finite-rank operator. We extend the notion in[10], we say that a Banach space X has (UKAP) if there is a compact
approximating sequence Kn : X → X such that limn→∞ ∥I − 2Kn∥ = 1. For the complex case of a complex Banach space
we say that X has a complex (UKAP) if there is a compact approximating sequence such that limn→∞ ∥I − (1 + λ)Kn∥ = 1
whenever |λ| = 1. This condition imposes the ideal property.

Lemma 2.1. [6]

(i) Let X be a separable Banach space.Then X has (UKAP ) if and only if for every ε > 0 there is a sequence (An) of
compact operators such that for every x ∈ X and every n and every θj = ±1, 1 ≤ j ≤ n, we have

∑∞
n=1Anx = x and∥∥∥∑n

j=1 θjAjx
∥∥∥ ≤ (1 + ε)∥x∥.

(ii) Let X be a separable complex Banach space. Then X has complex (UKAP) if and only if for every ε > 0 there is a
sequence (An) of compact operators such that for every x ∈ X and every n and every |θj | ≤ 1, for 1 ≤ j ≤ n, we have∑∞

n=1Anx = x and
∥∥∥∑n

j=1 θjAjx
∥∥∥ ≤ (1 + ε)∥x∥.

Proposition 2.4. Let X be a separable Banach space. If X has (UKAP) then X is a u− ideal and K(X) is a u− ideal in
L(X).

Proof. The fact that X is a u− ideal follows easily from the previous chapter. The remainder conclusion also follows since
if z is a finite-dimensional subspace of K(X) and ε > 0 We can find K compact such that ∥KS − S∥ ≤ ϵ∥S∥ for S ∈ Z and
∥1− 2K∥ ≤ 1 + ϵ. Then consider Λ(S) = KS for S ∈ L(X).

In the Theorems that follows we show the converse of the above proposition under the condition of separability and
reflexivity.

Theorem 2.2. Let X be separable reflexive Banach space. Then X has UKAP if and only if K(X) is a u− ideal in L(X).

Proof. We denote by P : L(X)∗ → L(X)∗ the projection with kerP = L(X)⊥ and by T : L(X). → K(X)∗∗ the induced
operator. For x ∈ X and x∗ ∈ X∗, we let x ⊗ x∗ ∈ K(X)∗ be the linear functional given by ⟨K,x⊗ x∗⟩ = ⟨Kx, x∗⟩ . This
functional has a natural extension to L(X), also denoted by x⊗ x∗. Let u ∈ X and v ∈ X∗ be points of Frechet smoothness
with ∥u∥ = ∥v∗∥ = 1.We suppose u∗ ∈ SX∗ and v··· ∈ SX satisfy u∗(u) = v∗(v) = 1. Let A : X → X be the rank-one operator
given by Ax = v∗(x)u. Then A is a point of Frechet smoothness in L(X). For real λ we have ∥A+λI∥ = 1+λu∗(v)+α(|λ|).
Hence in K(X)∗∗ we obtain ∥A + λT (I)∥ ≤ 1 + λu∗(v) + α(|λ|) in particular, ⟨v ⊗ u∗, A+ λT (I)⟩ ≤ 1 + λu∗(v)+ α(|λ|).
Hence ⟨v ⊗ u∗, T (I)⟩ = u∗(v). Now since the points of Frechet smoothness form a dense Gδ in both X and X∗ we have for
every ∈ X,x∗ ∈ X∗, ⟨x⊗ x∗, T (I)⟩ = x∗(x).

Now by lemma 2.2 in [5], there is a net (Kd) in K(X) such that Kd converges weak∗ to T (I) and limsup ∥I − 2Kd∥ = 1.
But then Kd → I for the weak operator topology. Hence for each d we can find Ld ∈ co {Ke : e ≥ d} such that Kd → I
for the strong operator topology. It follows that there is a compact approximating sequence (Mn) in K(X) such that
lim ∥I − 2Mn∥ = 1.

Theorem 2.3. Let X be a complex Banach space such that X∗ is separable. Then X has complex (UKAP) if and only if
K(X) is an h-ideal in L(X) and X is an h-ideal.

Proof. For x∗ ∈ X∗ and x∗∗ ∈ X∗∗ we use x∗ ⊗ x∗∗ to denote the element of K(X)∗ given by ⟨S, x⊗ x∗⟩ = x∗∗ (S∗x∗) .
It is easy to note that the formula then defines x∗ ⊗ x∗∗ ∈ L(X)∗. We define L(X) → K(X)∗∗. By this it is possible to
define an operator H : X∗∗ → X∗∗ such that ⟨x⊗ x∗, T (I)⟩ = ⟨x∗, Hx∗∗⟩, we first argue that H is Hermitian. In fact
suppose |λ| = 1. It follows from the fact that P is Hermitian that ∥1− (1 + λ)H∥ ≤ 1. Thus if ϕ is a state on L(X)∗∗ then
|1− (1 + λ)ϕ(H)| ≤ 1. Hence ϕ(H) is real and further 0 ≤ ϕ(H) ≤ 1. Hence H is a hermitian.
Next we argue that there is an Hermitian H0 : X → X such that H = H0

∗∗. In fact for any real t, e(itH) is an isometric
isomorphism on X∗∗. We recall that X is necessarily a strict h− ideal by Theorem 6.6 in [6]. Applying theorem 5.7 in [6]
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we can deduce that e(itH) mapsX to X and it is weak ∗ continuous on differentiating we conclude that H = H0
∗∗ where

H0 : X → X is the restriction of H.

Next we recall that the collection of points of Frechet smoothness in X form a dense Gδ as do the points of Gateaux
smoothness in X∗. Let us suppose that u ∈ SX is a point of Frechet smoothness and that u∗ ∈ SX∗ is a point of Gateaux
smoothness and v∗∗ is the corresponding exposed functional in SX∗∗ . We define the rank-one operator Ax = v∗(x)u and
claim that

∥A+ ξI∥ = 1 +Rξ (v∗∗ (u∗)) +O(|ξ|).

In fact

∥A+ ξI∥ ≥ Rv∗∗ (A∗u∗ + ξu∗) = 1 +R (ξv∗∗ (u∗)) .

Conversely, for any ξ we may pick

x∗(ξ) ∈ SX∗so that0 ≤ x∗(ξ)(u) ≤ 1and ∥(A∗ + ξI) (x∗(ξ))∥ ≥ ∥A+ ξI∥ − |ξ|2.

Letting ξ → 0 we observe that if x∗ is any weak* cluster point then (0 ≤ x∗(u)) ≤ 1 and ∥Ax∗∥ = 1. Hence lim ξ → 0asx∗(ξ) =
u∗ weak∗. However, this implies, since u is a point of Frechet smoothness, that lim ξ → 0 ∥x∗(ξ)− u∗∥ = 0. It now follows
immediately from the Gateaux smoothness of the norm at v∗ that

∥A+ ξI∥ = 1 +R (ξv∗∗ (u∗)) +O(|ξ|).

Using the formal identity

∥T (A) + ξT (I)∥ ≤ 1 +R (ξv∗∗ (u∗)) +O(|ξ|)

and hence

R⟨(A∗∗ + ξH) v∗∗, u∗⟩ ≤ 1 +R⟨ξv∗∗, u∗⟩+O(|ξ|).

It follows that ⟨Hv∗∗, u∗⟩ = ⟨v∗∗, u∗⟩. If we fix u∗, the collection of all v∗∗ as v∗ ranges all over all points of Gateaux
smoothness spans a weak ∗-dense subspace of X∗ and so H0 = I. Now there is a net (Kd) in K(X) such that Kd converges
weak ∗ to T (I) and limsup ∥I − (1 + λ)Kd∥ = 1 whenever |λ| = 1.

3 Locally Uniform Rotundity

The properties of locally uniform rotund norms are useful in showing that sufficiently many simple tensors for example
x∗ ⊗ y∗∗ when viewed as functionals on the finite rank operator F (X,Y ) have unique Hahn-Banach extensions to the space
of all bounded operators K(X,Y ).

Some of the basic facts on locally uniform rotund norms useful in the sequel are:

Definition 3.1. The norm on a Banach space Y is locally uniformly rotund at a point y ̸= 0 if limn ∥y − yn∥ = 0 whenever
(yn) ⊆ Y with ∥yn∥ = ∥y∥ for all n and limn

∥∥ y+yn
2

∥∥ = ∥y∥. The norm is locally uniformly rotund if it is locally uniformly
rotund at every point y ̸= 0 in Y .

The result that follows provides the link between the denting points and the norm rotund characteristic:

Proposition 3.1. Let Y be a Banach space and let y ∈ Y \{0}. The following are equivalent:

(a) The norm ∥.∥ is locally uniformly rotund at y.

(b) If (yn) ⊆ Y is such that limn

(
2∥y∥2 + 2 ∥yn∥2 − ∥y + yn∥2 = 0

)
,

then limn ∥y − yn∥ = 0.

(c) The function δy : [0, 2∥y∥] → [0, ∥y∥],defined by the formula δy(ε) = inf{∥y∥+ ∥u∥ − ∥y + u∥ : ∥u∥ = ∥y∥, ∥y − u∥ ≥
ε},satisfies δy(ε) > 0 whenever 0 < ε ≤ 2∥y∥.

We provide the following renorming result whose proof can be given using the above proposition.
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Lemma 3.1. Let Y be a Banach space with ∥.∥ and let y ∈ Y \{0}. Assume ∥. | ∥ is an equivalent norm on Y such that ∥.|| |
is locally uniformly rotund at y. Let a, b > 0 and define a new norm |.| on Y by |y|2 = a∥y∥2 + ∥|y|∥2. Then |.| is locally
uniformly rotund at y.

Remark 3.1. From the lemma above if we choose a close to 1 and b close to 0 , we may assume that the new norm is ”close”
to the original norm. Precisely this leads to the next lemma.

Lemma 3.2. Let Y be a Banach space, let Z ⊆ Y be a closed separable subspace and let ε > 0 be given. There exists an
equivalent norm ∥|.|∥ on Y such that BY (0, 1) ⊆ B(Y,∥∥. | ∥

)
(0, 1) ⊆ BY (0, 1 + ε) and such that the norm ∥..∥ is locally

uniformly rotund at every point Z ̸= 0 in Z.

Proof. Z is a separable space and so by theorem 11.2.6 in [12]. It has an equivalent locally uniform rotund norm can be
extended to an equivalent norm on Y in such a way that this new norm is locally uniformly rotund at every z ̸= 0 in Z.

Let ∥1∥ be this equivalent norm on Y which is locally uniformly rotund at every point z ∈ Z, z ̸= 0. For some c ≥ 1,
we have 1

c
∥y∥ ≤ ∥|y|∥ ≤ c∥y∥ for all y ∈ Y. If 1/c2 > θ > 0 and we let |y|2θ =

(
1− θc2

)
∥y∥2 + θ∥|y|∥2, then | · |θ is an

equivalent norm on Y . | · |θ is locally uniformly rotund at every z ̸= 0 in Z. Let ε > 0 be given, choose θ0 so small that√
1− θ0c2 + θ0/c2 ≥ (1+ ε)−1. Finally, we redefine ∥.∥ = ∥.∥θ. and get (B(Y,∥·∥)(0, 1) ⊆ B(Y , ∥| · |∥)(0, 1) ⊆ B(Y,∥·∥)(0, 1+ ε)

as desired.

A similar result as the one above for subspaces of dual spaces will be of interest to us too. We shall consider finite-
dimensional subspaces. This is considered in the Lemma that follows.

Lemma 3.3. Let Y be a Banach space, let F ⊆ Y ∗ be finite-dimensional subspace and let ε > 0. There exists an equivalent
norm ∥.∥ on Y such that

(BY (0, 1) ⊆ B(Y , ∥|.|)(0, 1) ⊆ BY (0, 1 + ε)

and such that the dual norm of ∥|.|∥ on Y ∗ is locally uniformly rotund at every point y∗ ̸= 0 in F

Proof. Let θ > 0 be given. Since dimF < ∞, there exists an equivalent locally uniformly rotund norm |.| on F. Moreover
we may assume

BF (0, 1) ⊆ B(F,|,|)(0, 1) ⊆ BF (0, 1 + θ) · LetB = Conv
(
BY ∗ , B(F,|·|)

)
and let |.| be the norm on Y ∗ defined by B. B is weak ∗-compact, so |.| is a dual norm. Moreover,

|y∗| ≤ ∥y∗∥ ≤ (1 + θ) |y∗| for all y∗ ∈ Y ∗ or BY ∗(0, 1) ⊆ B(Y ∗,|·|)(0, 1) ⊆ BY ∗(0, 1 + θ)·

Next we define a new norm on Y ∗ by ∥|y∗|∥2θ = |y∗|2 + θd2 (y∗, F ) · d (y∗, F ) is computed in the |.| - norm on Y ∗ · (Y ∗, ∥|.|||θ)
is locally uniformly rotund at every point y∗ ̸= 0 in F . We shall show that ∥ |.||θ is a dual norm. Assume y∗α → y∗ weak∗

with ∥|y∗α|∥θ ≤ 1. Choose (f∗α) ⊆ F such that |y∗α − f∗α| = d (y∗α, F ) (f∗α) is a bounded net and dimF < ∞, so by passing to
a subnet, we may assume f∗α → f∗ ∈ F in norm. We get

d (y∗α∗ , F ) ≤ |y∗ − f∗| ≤ lim inf
α

| y∗α − f∗α |= lim inf
α

d (y∗α, F ) .

Hence,
∥|y∗|∥2θ = |y∗|2 + θd2 (y∗, F ) ≤ lim inf

α
|y∗α|

2
+ θ lim inf

α
d2 (y∗α, F ) ≤ lim inf

α
∥|y∗α|∥

2
θ .

This shows that ∥. | ∥θ is a dual norm. Now since
d (y∗α, F ) ≤ |y∗|, we get |y∗| ≤ ||y∗|||θ ≤ (1 + θ)1/2 |y∗| Thus

(1 + θ)−1 ∥y∗∥ ≤ ∥|y∗|∥θ ≤ (1 + θ)1/2 ∥y∗∥ .

This implies that
(1 + θ)−1/2∥y∥ ≤ ∥|y∗|∥θ ≤ (1 + θ)−1∥y∥ for all y ∈ Y

Let ε > 0. If we use ∥|.|∥ = (1+θ)−1∥|.|∥θ as the new norm, and choose θ such that (1+θ)3/2 ≤ 1+ε, then (1+θ)−3/2∥y∥ ≤
∥|y|∥−1 ≤ ∥y∥ for all y ∈ Y and thus

BY (0, 1) ⊆ B(Y , ∥| · |∥
)
(0, 1) ⊆ BY (0, 1 + ε)
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Lemma 3.4. [11] Let X and Y be Banach spaces.Let x∗ ⊗ y ∈ F(Y,X)∗ with x∗ ∈ X∗ and y ∈ Y .If the norm of Y
is locally uniformly rotund at y, then the only Hahn-Banach extension of x∗ ⊗ y to H(Y,X) is the trivial one, that is
HB (x∗ ⊗ y) = {x∗ ⊗ y} .

We shall also need elements in the bidual and the lemma that follows takes care of that.

Lemma 3.5. [13] Let X and Y be Banach spaces. Let y∗ ⊗ x∗∗ ∈ F(X,Y )∗ with y∗ ∈ Y ∗ and x∗∗ ∈ X∗∗. If the norm of
Y ∗ is locally uniformly rotund at y∗ then the only Hahn-Banach extension of y∗ ⊗ x∗∗ to H(X,Y ) is the trivial one, that is
HB (y∗ ⊗ x∗∗) = {y∗ ⊗ x∗∗} .

4 Renorming and the Hahn-Banach Extension Operators

Let X and Y be Banach spaces. We let A and B denote closed operator ideals. This will ensure that F(Y,X) ⊆ A(Y,X)
and that A(Y,X) is a closed subspace of H(Y,X).

Theorem 4.1. Let X be a Banach space and Z be a separable subspace of a Banach space Y . Let A and B be operator
ideals satisfying A ⊆ B. If A(Ŷ , X) is an ideal in B(Ŷ , X) for every equivalent renorming Ŷ of Y , then there exists a
ψ ∈ HB(A(Y,X),B(Y,X)) such that (ψ (x∗ ⊗ z)) (T ) = (x∗ ⊗ z) (T ) for all x∗ ∈ X∗, z ∈ Z, and T ∈ B(Y,X)

Proof. For every ε > 0 we can find an equivalent norm ∥ε∥ on Y such that Ys = (Y, ∥.∥s) is locally uniformly rotund at
every z ̸= 0 in Zε and such that BY (0, 1) ⊆ BYε(0, 1) ⊆ BY (0, 1 + ε). By assumption, A (Yε, X) is an ideal in B (Yε, X) so
there exists a Hahn-Banach extension Qε : A (Yε, X)∗ → B (Yε, X)∗ . Now, (Qε (x

∗ ⊗ z)) (T ) = (x∗ ⊗ z) (T ) for all x∗ ∈ X∗,
all z ∈ Z, and all T ∈ B (Yε, X) . Let Is : Ys → Y denote the identity mapping. Then

∥∥I−1
ε

∥∥ = 1 and ∥Iε∥ → 1 as ε → 0.
Define ψs ∈ H (A(Y,X)∗,B(Y,X)∗) by

(ψs(ϕ)) (T ) = (Qs) (ϕs) (T ◦ Is) , ϕ ∈ A(Y,X)∗, T ∈ B(Y,X)

where ϕs ∈ A (Ys, X)∗ is defined by

ϕε(S) = ϕ
(
S ◦ I−1

ε

)
, S ∈ A(Y,X)

We can conclude that (ψε) , ε ∈ (0, 1] has a subnet converging weak∗ to some ψ ∈ HB(A(Y,X),B(Y,X)) with required
property.

The following Lemma and theorem are crucial in the proof of one of our main results

Lemma 4.2. [13] Let X be a Banach space and Z be a separable subspace of a Banach space Y . Let A and B be operator
ideals satisfying A ⊆ B. The subset

KZ = ψ ∈ H B(A(Y,X), B(Y,X)) : (ψ(x∗ ⊗ z))(T ) = (x∗ ⊗ z) (T ), ∀ x∗ ∈ X∗, z ∈ Z

and T ∈ B(Y,X)} of
(
B(Y,X)⊗̂πA(Y,X)∗

)∗
is compact in the weak ∗-topology.

Theorem 4.3. Let X and Y be Banach spaces. Let A and B be operator ideals satisfying A ⊆ B.If A(Ŷ , X) is an ideal in

B(Ŷ , X) for every equivalent renorming Ŷ of Y , then there exists a ψ ∈ HB(A(Y,X),B(Y,X)) such that (ψ (x∗ ⊗ y)) (T ) =
(x∗ ⊗ y) (T ) for all x∗ ∈ X∗, y ∈ Y , and T ∈ B(Y,X).

Proof. See [11]

We now state some of our main results:

Proposition 4.1. If F(Y,X) is an ideal in H(Y,X) for every separable Banach space Y , then X has a metric approximation
property.
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Proof. Let L ⊆ X be a separable subspace, then we can find a separable ideal Y in X with L ⊆ Y . Let φ : Y ∗ → X∗ be a
Hahn-Banach extension operator. Let ψ : F(Y,X)∗ → H(Y,X)∗ be a Hahn-Banach extension operator with ψ (x∗ ⊗ y) =
x∗ ⊗ y for all y ∈ Y and x∗ ∈ X∗. Let I : Y → X be the identity map. We see that ψ∗(I) ∈ F(Y,X)∗∗ there exists a net
(Tα) ⊆ F(Y,X) such that supα ∥Tα∥ ≤ ∥I∥ = 1 and Tα → ψ∗(I) in the weak ∗-topology.

In particular

⟨Tαy, x
∗⟩ = ⟨Tα, x

∗ ⊗ y⟩ → ⟨ψ∗(I), x∗ ⊗ y⟩ = ⟨I, ψ (x∗ ⊗ y)⟩ = ⟨Iy, x∗⟩ for ally ∈ Y

and x∗ ∈ X∗, that is Tα → I in the weak operator topology. By taking anew net from Conv (Tα), which we also denote
(Tα), we may assume that Tα → I in the strong operator topology.

Let T̂α = Tα
∗∗◦φ∗|X ∈ F(X,X), then

∥∥∥T̂α

∥∥∥ = ∥Tα∥ ≤ 1 and T̂α converges pointwise to the identity IX on Y . It follows

then that X has the metric approximation property.

Proposition 4.2. If F(X̂,X) is an ideal in H(X̂,X) for every equivalent renorming X̂ of , then X has a metric approximation
property.

Proof. Let Y = X. Then there exists ψ ∈ HB(F(X,X),H(X,X)) such that ψ (x∗ ⊗ x) = x∗⊗x for all x ∈ X and x∗ ∈ X∗.
Let i : F(X,X) → H(X,X) be the natural inclusion and define P = ψ ◦ i∗. Using Theorem 5.4 from [6] with P as the ideal
projection we conclude that X has the metric approximation property. Let IX be the identity operator on X, it can be seen
that ψ∗ (IX) ∈ F(X,X)∗∗. It follows that there exists a net (Tα) ⊆ F(X,X) such that supα ∥Tα∥ ≤= 1 and Ta → IX in
the weak ∗-topology. In particular ⟨Tαx, x

∗⟩ → ⟨ψ∗ (IX) , x∗ ⊗ x⟩ = ⟨IX , ψ (x∗ ⊗ x)⟩ = ⟨IXx, x∗⟩ for all x ∈ X and x∗ ∈ X∗,
that is Tα → IX in the weak operator topology. By taking anew net consisting of convex combinations of the Tα ’s we may
assume that the net converges in the strong operator topology.

5 Dual Renorming and the Hahn-Banach Extensions

In this section we proof our major result under dual renorming. We shall replace a separable subspace Z ⊆ Y with a
finite-dimensional subspace F ⊆ Y ∗.

Proposition 5.1. Let X and Y be Banach spaces, and let F be a finite-dimensional subspace of Y ∗.Let A and B be operator
ideals satisfying A ⊆ B. If A(X, Ŷ ) is an ideal in B(X, Ŷ ) for every equivalent renorming Ŷ of Y , then there exists a
ψ ∈ HB(A(X,Y ),B(X,Y )) such that (ψ (y∗ ⊗ x∗∗)) (T ) = (y∗ ⊗ x∗∗) (T ) for all y∗ ∈ F , all x∗∗ ∈ X∗∗ and all T ∈ B(X,Y ).

Proof. For all ε ∈ (0, 1] there exists by an equivalent norm ∥.∥ε on Y such that the dual norm on Y ∗ is locally uniformly
rotund at every point y∗ ̸= 0 in Y such that

BY (0, 1) ⊆ B(Y,∥∥ε)(0, 1) ⊆ BY (0, 1 + ε)

Let Yε = (Y, ∥.∥ε).By assumption A (X,Yε) is an ideal in B (X,Yε) so there exists a HahnBanach extension operator Qε :
A (X,Yε)

∗ → B (X,Yε)
∗.Equivalently, the tensor space gives: Qε (y

∗ ⊗ x∗∗) = y∗ ⊗ x∗∗ for all y∗ ∈ Fε, and x
∗∗ ∈ X∗∗. Let

Iε : Yε → Y denote the identity mapping. Then
∥∥Iε−1

∥∥ = 1 and ∥Iε∥ → 1 as ε→ 0. Define ψε ∈ H (A(X,Y )∗,B(X,Y )∗) by
(ψε(ϕ)) (T ) = (Qε (ϕε))

(
I−1
ε
◦T
)
, ϕ ∈ A(X,Y )∗, T ∈ B(X,Y ), where ϕε ∈ A (X,Ys)

∗ is defined by ϕs(S) = ϕ (Is
◦S) , S ∈

(X,Ys) such that ψ is constructable.

Lemma 5.1. Let X and Y be Banach spaces, and let F be a finite-dimensional subspace of Y ∗. Let A and B be operator
ideals satisfying A ⊆ B. The subset

KF = {ψ ∈ H B(A(X,Y ) B(X,Y )) : (ψ (y∗ ⊗ x∗∗)) (T ) = (y∗⊗)x∗∗(T ),

for all y∗ ∈ F, x∗∗ ∈ X∗∗, and T ∈ B(Y,X)} of
(
B(X,Y )⊗̂πA(X,Y )∗

)∗
is compact in the weak ∗-topology.

Theorem 5.2. Let X and Y be Banach spaces. Let A and B be operator ideals satisfying A ⊆ B. If A(X, Ŷ ) is an ideal in
B(X, Ŷ ) for every equivalent renorming Ŷ of Y , then there exists a ψ ∈ HB(A(X,Y ),B(X,Y )) such that (ψ (y∗ ⊗ x∗∗)) (T ) =
(y∗ ⊗ x∗∗) (T ) for all y∗ ∈ Y ∗, all x∗∗ ∈ X∗∗ and all T ∈ B(X,Y ).
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Proof. Let KF be as defined in Lemma 4.5.1 for every finite-dimensional subspace F of Y ∗ then each KF ̸= Φ. If
F1, . . . . . . , Fn is a finite collection of finite-dimensional subspaces of Y ∗, then ∩n

i=1KFi ̸= Φ. Let F = span (F1 ∪ . . . . ∪ Fn) .
Then F is a finite dimensional subspace of Y ∗ and ∩n

i=1KFi ⊇ KF ̸= Φ. Now we know by compactness there is a
ψ ∈ ∩KF , F ⊆ Y ∗, dimF < ∞. For all y∗ ∈ Y ∗ there is a finite-dimensional subspace F of Y ∗ such that y∗ ∈ F .
Since ψ ∈ KF we have (ψ (y∗ ⊗ x∗∗)) (T ) = (y∗ ⊗ x∗∗) (T ) for all x∗∗ ∈ X∗∗ and T ∈ B(X,Y ).

We now state and prove our main result for dual spaces.

Theorem 5.3. Let X be a Banach space. Given F(X, X̂) is an ideal in H(X, X̂) for every equivalent renorming X̂ of X,
then X has a shrinking metric approximation property.

Proof. Starting with a Hahn-Banach extension operator ψ : F(X,X)∗ → H(X,X)∗ such that ψ (x∗ ⊗ x∗∗) = x∗ ⊗ x∗∗ for
all x∗ ∈ X∗ and x∗∗ ∈ X∗∗. Theorem 5.2 in [10] now shows that X∗ has the metric approximation property.

6 u-Ideals as Operators and their Duals

Lemma 6.1. Let X and Y be Banach spaces.Let A and B be operator ideals satisfying A ⊆ B and let T ∈ B(Y,X). If A(Y,X)
is a u-deals in B(Y,X) and P is an ideal projection, then there exists a net (Tα) ⊆ B(Y,X) with limsup α ∥T − 2Tα∥ ≤ ∥T∥
such that y∗∗ (Tα

∗x∗) →α (P (x∗ ⊗ y∗∗)) (T ) for all x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗.

Theorem 6.2. Let X be a Banach space and let Z be a separable subspace of a Banach space Y . Let A and B be operator
ideals satisfying A ⊆ B and let T ∈ B(Y,X). If A(Ŷ , X) is a u-ideals in B(Ŷ , X) for every equivalent renorming Ŷ of Y ,
then there exists a ψ ∈ HB(A(Y,X),B(Y,X) ) such that (ψ (x∗ ⊗ z)) (T ) = (x∗ ⊗ z) (T ) for all x∗ ∈ X∗ and z ∈ Z and
T ∈ B(Y,X). Furthermore the ideal projection P = ψ ◦ i∗, where i is a natural inclusion, satisfies ∥I − 2P∥ = 1.

Proof. For every > 0, we can find an equivalent norm ∥.∥ε on Y such that Yε = (Y, ∥.∥ε) is locally uniformly rotund at every
z ̸= 0 in Zε and such that BY (0, 1) ⊆ BYε(0, 1) ⊆ BY (0, 1 + ε). Let iε : A (Yε, X) → B (Yε, X) be the identity map. By way
of assumption A (Yε, X) is a u-deals in B (Yε, X)

So that there exists an ideal projection Gs such that ∥I − 2Gs∥ = 1.We find a Hahn-Banach extension operator Qε such
that Gε = Qε ◦ i∗ and (Qε (x

∗ ⊗ z)) (T ) = (x∗ ⊗ z) (T ) for all x∗ ∈ X∗ and z ∈ Zε, and T ∈ B (Ys, X). Let Iε : Yε → Y
denote the identity mapping. We define ϕε ∈ A (Yε, X)∗ using ϕ ∈ A(Y,X)∗,and we define ψε ∈ H (A(Y,X)∗,A(Y,X)∗)
using Qε. Let S ∈ B(Y,X)∗ and define Sε ∈ B (Yε, X)∗ by Sε(T ) = S

(
T ◦ I−1

ε

)
, T ∈ B (Yε, X). For T ∈ A (Yε, X) and

S ∈ B(Y,X)∗ we have [i∗(S)]ε (T ) = i∗(S)
(
T ◦ I−1

ε

)
= S

(
i
(
T ◦ I−1

ε

))
= S

(
iε(T ) ◦ I−1

ε

)
= Sε (iε(T ))

= i∗εSε(T )

So that these functionals have the same Qε extension. Let Pε = ψε ◦ i∗. Then we have the following norm estimate:

= sup
S∈BB(Y,X)∗

T ∈ BB(Y,X)−
∣∣S(T )− 2

(
(Qε) [i

∗(S)]ε
)
(T ◦ Iε)

∣∣
≤ δ ∈ BB(Y,X)∗ ∥Sε − 2 (Qε ◦ iε∗) (δε)∥ (1 + ε)

≤ δ ∈ BB(Y,X)∗ ∥I − 2Qε∥ (1 + ε) ≤ (1 + ε).

Since ∥I − 2Qε∥ ≤ 1.

Since (Qε)s∈(0,1] ⊆ H (A(Y,X)∗,B(Y,X)∗) =
(
B(Y,X)⊗̂πA(Y,X)∗

)∗
is a bounded net it has a subnet

(
Qε(v)

)
that converges

weak ∗ to some Q. In fact Q is a Hahn-Banach extension operator. Next we show that the projection P defined by P = Q◦i∗
is the desired u-ideal projection.
Let S ∈ B(Y,X)∗ and T ∈ B(Y,X), then P (S)(T ) = Q (i∗(S)) (T ) = lim

v Qε(v) (i
∗(S)) (T )

= lim vPε(v)((S)(T ) so that sup
B(Y,X)

| S(T )− 2P (S)(T ) |
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= s ∈ BB(Y,X)∗ T ∈ BB(Y,X) lim v | S(T )− 2Pε(v)(S)(T ) |
≤ s ∈ BB(Y,X)∗ T ∈ BB(Y,X) lim v∥1− 2Pε(v)∥∥S∥∥T∥

≤ lim v

∥∥1− 2Pε(v)

∥∥ = 1

So we have as required ∥I − 2P∥ = 1.

Lemma 6.3. Let X be a Banach space and let Z be a separable subspace of a Banach space Y .Let A and B be operator
ideals satisfying A ⊆ B and let i : A → B be the natural inclusion. The subset

Kz =

{
ψ ∈ HB(A(X,Y ),B(X,Y )) : (ψ (x∗ ⊗ z)) (T ) = (x∗ ⊗ z) (T ),

∀x ∈ X∗, z ∈ Zand T ∈ B(Y,X) and ∥1− 2P∥ = 1, where P = Q ◦ i∗
}

is weak*-compact in
(
B(Y,X)⊗̂πA(Y,X)∗

)∗
.

Proof. Let ψε ⊆ Kz be a net which converges weak ∗ to some ψ ∈
(
B(Y,X)⊗̂πA(Y,X)∗

)∗
. Now we have (ψ (x∗ ⊗ z)) (T ) =

(x∗ ⊗ z) (T ) for all x ∈ X∗, z ∈ Z, and T ∈ B(Y,X). Let P = Q ◦ i∗ and thus ∥1− 2P∥ ≤ limα ∥1− 2Pα∥ = 1. This shows
that Kz is weak ∗− closed and since it is a bounded subnet it is weak ∗− compact.

Theorem 6.4. Let X be a Banach space. Given a net (Tα) ⊆ F(X,X) with
lim supα ∥1− 2Tα∥ ≤ 1 such that Tαx → x for all x ∈ X and Tαx

∗ → x∗ for all x∗ ∈ X∗, then F(X,Y ) is a u-ideal in
H(X,Y ) for every Banach space Y .

Proof. We shall proof the case for finite rank operators. Let F be a finite dimension subspace of H(X,Y ), and let ε > 0.
Let G = F ∩F(X,Y ). Then K = UT∈BGT

∗ (BY ∗) is a compact subspace of X∗. By assumption we can find a T ∈ F(X,X)
such that ∥1− 2T∥ ≤ 1+ ε and such that that ∥x∗ − T ∗x∗∥ ≤ ε for all x∗ ∈ K. We define a linear map L : F → F(X,Y ) by
L(S) = ST .Then ∥S − ST∥ = ∥S∗ − T ∗S∗∥ < ε∥S∥ for all S ∈ G and ∥S − 2L(S)∥ ≤ (1+ ε)∥S∥ for all S ∈ F . By applying
proposition 3.6 in [4] we find that F(X,Y ) is a u-ideal in H(X,Y ).

The following results are key to the proof of the second main result under this section.

Theorem 6.5. Let X and Y be Banach spaces and let F be a finite dimensional subspace of Y ∗. Let A and B be operator
ideals satisfying A ⊆ B. If A(X, Ŷ ) is a u-deals in B(X, Ŷ ) for every equivalent renorming Ŷ of Y , then there exists a

ψ ∈ HB(A(X,Y ),B(X,Y )) : (ψ (y∗ ⊗ x∗∗)) (T ) = (y∗ ⊗ x∗∗) (T ),

for all y∗ ∈ F, x∗∗ ∈ X∗∗, and T ∈ B(X,Y ) Furthermore, the ideal projection P = Q ◦ i∗ where i is a natural inclusion,
satisfies ∥1− 2P∥ = 1.

Lemma 6.6. Let X and Y be Banach spaces and let F be a finite dimensional subspace of Y ∗. Let A and B be operator
ideals satisfying A ⊆ B and let i : A → B be the natural inclusion. The subset

KZ = ψ ∈ HB(A(X,Y ),B(X,Y )) : ψ (y∗ ⊗ x∗∗) (T ) = (y∗ ⊗ x∗∗) (T ), ∀y∗ ∈ F, x∗∗ ∈ X∗∗

T ∈ B(Y,X) , ∥1− 2P∥ = 1, P = Q ◦ i∗

is weak ∗-compact in
(
B(Y,X)⊗̂πA(Y,X)∗

)∗
.

Theorem 6.7. Let X and Y be Banach spaces and let F be a finite dimensional subspace of Y ∗. Let A and B be operator
ideals satisfying A ⊆ B. If A(X, Ŷ ) is a u-ideals in B(X, Ŷ ) for every equivalent renorming Ŷ of Y , then there exists a
ψ ∈ HB(A(X,Y ),B(X,Y )) : (ψ (y∗ ⊗ x∗∗)) (T ) = (y∗ ⊗ x∗∗) (T ), for all y∗ ∈ Y ∗, x∗∗ ∈ X∗∗, and T ∈ B(X,Y ) Furthermore,
the ideal projection P = ψ ◦ i∗ where i is a natural inclusion, satisfies ∥1− 2P∥ = 1.

We can now prove our next result under this section.

Proposition 6.1. Let X be a Banach space. Given F(X, X̂) is a u-ideal in H(X, X̂) for every equivalent renorming X̂ of
X.Then there is a net (Tα) ⊆ F(X,X) with
lim supα ∥1− 2Tα∥ ≤ 1 such that Tαx→ x for all x ∈ X and Tαx

∗ → x∗ for all x∗ ∈ X∗.
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Proof. We limit ourselves to the case with finite rank operators. By ∗∗ above we can find a HahnBanach extension operator

ψ : F(X,X)∗ → H(X,X)∗

such that (ψ (x∗ ⊗ x∗∗)) (T ) = (x∗ ⊗ x∗∗) (T ) for all x∗ ∈ X∗, x∗∗ ∈ X∗∗ and T ∈ H(X,X). Let i : F(X,X) → H(X,X) be
the natural inclusion, and let P = ψ ◦ i∗ be the associated u-deal projection. Now there exists a net (Tα) ⊆ F(X,X) with
lim supα ∥1− 2Tα∥ ≤ 1 such that x∗∗ (Tα

∗x∗) →α (P (x∗ ⊗ x∗∗)) (T ) for all x∗ ∈ X∗ and x∗∗ ∈ X∗∗. Thus for all x∗ ∈ X∗

and x∗∗ ∈ X∗∗ x∗∗ (Tα
∗x∗) → αx

∗∗ (x∗), which means that Tα
∗ → I∗ in the weak operator topology on H (X∗, X∗). In

particular we have x∗ (Tαx) → αx
∗(x) for all x∗ ∈ X∗ and x ∈ X, so that Tα → I the weak operator topology on H(X,X).

By choosing a new net in conv (Tα), still denoted (Tα), we may assume Tα
∗ → I∗ in the strong operator topology on

H (X∗, X∗) and Tα → I in the strong operator topology on H(X,X).

7 Bounded Approximation Properties through Integral and Nuclear
Operators

Let X and Y be Banach spaces. We denote by L(X,Y ) the Banach space of all bounded linear operators from X to Y , and
by F(X,Y ) and W(X,Y ) its subspaces of finite rank operators and weakly compact operators. Let IX denote the identity
operator on X.

Definition 7.1. We say X has the weak λ - bounded approximation property (weak λ−BAP ) if for every Banach space
Y and every operator T ∈ W(X,Y ) there exists a net (Sα) ⊂ F(X,X) such that Sα → IX uniformly on compact subsets of
X and lim supα ∥TSα∥ ≤ λ∥T∥.

Thus the weak BAP can be characterized as the AP which is bounded for every weakly compact operator. This leads
to the following definition

Definition 7.2. Let Let X be a Banach space and let D = (D, ∥∥D) be a Banach operator ideal. We say that X has the λ -
bounded approximation property for D (weak λ−BAP for D ) if for every Banach space Y and evry operator T ∈ D(X,Y )
there exists a net (Sα) ⊂ F(X,X) such that Sα → IX uniformly on compact subsets of X and lim supα ∥TSα∥D ≤ λ∥T∥D.

For us to have a complete picture we recall other types of bounded approximation properties involving operator ideals
which have been studied.

Definition 7.3. Let D be an operator ideal. A Banach space X is said to have λ - bounded D - approximation property
(λ - bounded D−AP ) if there exists a net (Sα) ⊂ D(X,X) With supα ∥Sα∥ ≤ λ such that Sα → IX uniformly on compact
subsets of X.

We establish reformulations of BAP in terms of the boundedness for the Banach operator ideals of strictly integral and
integral operators respectively. The following Theorem and lemmas will be key in this direction.

Theorem 7.1. Let X be a Banach space and I integral operator, and let 1 ≤ λ < ∞. The following statements are
equivalent.

(i) X has the λ−BAP .

(ii) ∥T∥π ≤ λ∥T∥I for all T ∈ F(X,X).

Lemma 7.2. Let X be a Banach space, I an integral operator and 1 ≤ λ < ∞. If a Banach space Y has the property that
for every T ∈ I (X,Y ∗∗) there exists a net (Sα) ⊂ F(X,X) such that Sα → IX pointwise and lim supα ∥TSα∥π ≤ λ∥T∥I,
then every quotient space of Y has the same property.
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Proof. Denote by q : Y → Z the quotient mapping, and let U ∈ I (X,Z∗∗). Using well known results about tensor products,

I (X,Z∗∗) =
(
Z∗⊗̂εX

)∗
and Z∗Φ̂εX is a subspace of Y ∗⊗̂εX, we may consider a norm preserving extension of U . Thus

there exists T ∈
(
Y ∗⊗̂εX

)∗
= I (X,Y ∗∗), such that ∥T∥I = ∥U∥I and

(Ux) (z∗) = ⟨U, z∗ ⊗ x⟩ = ⟨T, q∗z∗ ⊗ x⟩ = (Tx) (q∗z∗) = (q∗∗Tx) (z∗)

for all x ∈ X and z∗ ∈ Z∗, meaning that U = q∗∗T. Let S ∈ F(X,X). Then US ∈ F (X,Z∗∗) = X∗ ⊗ Z∗∗ and
∥US∥π = ∥q∗∗TS∥π = ∥(IX ⊗ q∗∗) (TS)∥π ≤ ∥TS∥π.

Now if (Sα) ⊂ F(X,X) is chosen for T , then we also have lim supα ∥USα∥π ≤ lim supα ∥TSα∥π ≤ λ∥T∥I = λ∥U∥I

Lemma 7.3. Let X be a Banach space, and let T ∈ F(X,X) = X∗ ⊗X.Then there exists A ∈ L (X∗, X∗) with ∥A∥ = 1
and V ∈ F(X,X) such that V ∗ = AT ∗ and ∥T∥π ≤ lim supα ∥jXV Sα∥π for every net (Sα) ⊂ F(X,X) converging pointwise
to the identity IX .

Proof. Let T =
∑m

n=1 x
∗ ⊗ X. Using the canonical description

(
X∗8̂πX

)∗
= L (X∗, X∗), we find A ∈ L (X∗, X∗) with

∥A∥ = 1 such that ∥T∥π =
∑m

n=1 (Axn
∗) (xn) = trace(V ), where V =

∑m
n=1Axn

∗ ⊗ xn ∈ F(X,X) it is easy to verify that
V ∗ = AT ∗.
Let (Sα) ⊂ F(X,X) be a net such that Sα → IX pointwise. Since X∗⊗̂πX is a subspace of X∗⊗̂πX

∗∗ for all α, we have
∥V Sα∥π = ∥jXV Sα∥π . Therefore

∥T∥π =

m∑
n=1

(Axn
∗) (xn) = lim

α

m∑
n=1

(Axn
∗) (Sαxn)

= lim
α

m∑
n=1

(Sα
∗Axn

∗) (Sαxn)

= limtrace (V Sα) ≤ lim sup
α

∥V Sα∥π = lim sup
α

∥jXV Sα∥π .

Next, we proof the main result under this section.

Theorem 7.4. Let X be a Banach space, I an integral operator and 1 ≤ λ <∞.If X has λ-Bounded approximation property
for I then it has λ-bounded approximation property.

Proof. Since X has λ-Bounded approximation property for I, then for every l1(Γ)-space and for every T ∈ I (X, l1(Γ)
∗∗)

there exists a net (Sα) ⊂ F(X,X) such that Sα → IX pointwise and limsup α ∥TSα∥1 ≤ λ∥T∥I.Since TSα ∈ F (X, l1(Γ)
∗∗) =

X∗ ⊗ l1(Γ)
∗∗ and l1(Γ)

∗∗ has the metric approximation preoperty, it is well known that ∥TSα∥π = ∥TSα∥N = ∥TSα∥I .
Recalling that every Banach space is a quotient of some l1(Γ)− space we may assume that for every U ∈ I (X, X∗∗) there exists
(Sα) as above such that lim supα ∥USα∥π ≤ λ∥U∥I. Let T ∈ F(X,X). Choose A and V . Then choose a net (Sa) ⊂ F(X,X)
to be pointwise convergent to IX such that lim sup ∥jXV Sα∥π ≤ λ ∥jXV ∥I . Then by

∥T∥π ≤ λ ∥jXV ∥1 = λ∥V ∥I

On the other hand, since V ∗ = AT ∗,

∥V ∥I = ∥V ∗∥I = ∥AT ∗∥I ≤ ∥T ∗∥I = ∥T∥I

In conclusion,

∥T∥π ≤ λ∥T∥I
Which means that X has the λ-Bounded approximation property.
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8 The Nuclear Operator and the Weak Bounded Approximation
Property

Theorem 8.1. Let X be a Banach space, and 1 ≤ λ <∞. The following statements are equivalent.

(a) X has the weak λ−BAP

(b) ∥T∥π ≤ λ ∥jXT∥N , for all T ∈ F(X,X).

We will also need a reformation of the weak bounded approximation property in terms of extension operators as in the
Theorem that follows.

Definition 8.1. Let X be closed subspace of a Banach space W · An operator Φ ∈ L (X∗,W ∗) is called an extension
operator if (Φx∗) (x) = x∗(x) for all x ∈ X and x∗ ∈ X∗.

Theorem 8.2. Let X be a Banach space, and 1 ≤ λ <∞. The following statements are equivalent.

(a) X has the weak λ−BAP .

(b) There exists an extension operator Φ ∈ X ⊗X∗
w∗

⊂ L (X∗, X∗∗∗) =
(
X∗⊗̂πX

∗∗)∗ with ∥Φ∥ ≤ λ.

Remark 8.1. AT ∈ X∗⊗̂πX
∗∗ is defined in the usual way if T =

∑
n xn

∗ ⊗ un, with xn
∗ ∈ X∗, un ∈ l1, then AT =∑

n xn
∗ ⊗Aun.

Theorem 8.3. Let X be a Banach space, I an integral operator and 1 ≤ λ <∞. The following statements are equivalent.

(a) X has the weak λ−BAP

(b) has the λ−BAP for N .

Proof. We first establish (b) for Y = l1 since the nuclear operators factor through l1 and the dual space of N (X, l1) =
X∗⊗̂πl1. Let Φ be the extension operator as defined and let (Sv) ⊂ F(X,X) be a net such that Sv

∗ → Φ weak ∗ in
L (X∗, X∗∗∗) =

(
X∗⊗̂πX

∗∗)∗ . Let T ∈ N (X, l1) = X∗⊗̂πl1. We may assume without loss of generality that ∥T∥π = 1. We
show that every compact subset K of X and for every 0 < ε the convex subset C = {TS : S ∈ F(X,X), ∥Sx − x∥ ≤ ε for
all x ∈ K} of X∗⊗̂πl1 intersects the closed ball B =

{
u ∈ X∗⊗̂πl1 : ∥u∥π ≤ λ+ ε

}
.

If these were not the case then, there would exist A ∈ L (l1, X
∗∗) =

(
X∗⊗̂πl1

)∗
with ∥A∥ = 1 such that

λ+ ε = sup{Re⟨A, u⟩ : u ∈ B} ≤ inf{Re⟨A, TS⟩ : TS ∈ C}
≤ lim

v
|⟨A, TSv⟩| = lim

v
|⟨Sv

∗, AT ⟩| = |⟨Φ, AT ⟩| ≤ λ∥AT∥π ≤ λ

a contradiction which establishes Y = l1.
Next we let Y be a Banach space, let T ∈ N (X,Y ) and let ε > 0. According to [5] there exists R ∈ (l1, Y ) and T̂ ∈
N (X, l1) with ∥R∥ ≤ 1 and ∥T̂∥N ≤ ∥T∥N + ε/λ Such that T = RT̂ . Let (Sα) ⊂ F(X,X) be a net such that Sα → IX
uniformly on compact sets and Next, we show (b) → (a) Let T ∈ F(X,X). Choose A and V . Then V ∗ = AT ∗ and
For every net (Sα) ⊂ F(X,X) converging pointwise to IX . Since jXV ∈ N (X,X∗∗), for every ε > 0, we can write
jXV =

∑∞
n=1 xn

∗ ⊗ xn
∗∗, xn

∗ ∈ X∗, xn
∗∗ ∈ X∗∗, With

∑∞
n=1 ∥xn

∗∥ ∥xn∗∗∥ < ∥jXV ∥N + ε Now choose an l1(Γ)-space such
that X is its quotient space and denote q : l1(Γ) → X the quotient mapping. q∗ Will be an isometric embedding hence for all
xn
∗∗, there exists un

∗∗ ∈ l1(Γ)
∗∗ such that q∗∗un

∗∗ = xn
∗∗ and ∥un

∗∗∥ = ∥xn∗∗∥. Define And choose a net (Sα) ⊂ F(X,X)
converging pointwise to IX such that limα sup ∥USα∥N ≤ λ∥U∥N ≤ λ

∑∞
n=1 ∥xn

∗∥ ∥un
∗∗∥ Moreover,

∥jXV ∥N = ∥V ∗∥N = ∥AT ∗∥N ≤ ∥T ∗∥N = ∥jXT∥N .

On the other hand, it can be easily verified that jXV = q∗∗U .Hence jXV Sα = q∗∗USα. Therefore,

∥jXV Sα∥π = ∥q∗∗USα∥π ≤ ∥USα∥π = ∥USα∥N .

In conclusion
∥T∥π ≤ lim

α
sup ∥jXV Sα∥π ≤ lim

α
sup ∥USα∥N < λ ∥jXT∥N + ε

By letting ε→ 0, we have ∥T∥π < λ ∥jXT∥N which means thatX has weak Bounded approximation property as required.
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9 Conclusion

The study determines some spaces of ideal operators which hold both the space and ideal characteristics by the use of
approximation properties. The u-ideals and their local and hereditary properties have been studied . Using the Hahn-
Banach extension, a study on strict u-ideals is done and shown that if there is a Banach space which is a strict u-ideal and
has a separable subspace, then the separable subspace is a strict u-ideal and it is separably determined. The results give
the metric approximation property in classes of tonsorially well defined Hahn-Banach extensions and equivalent renorming.
We have given the renorming of u−ideals as an operator space and presented the integral property, λ−boundedness and
λ−boundedness approximation property and established the connectedness of the three properties.Indeed there is established
the equivalence of nuclearity and weak λ−boundedness.
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